Loyola University Chicago Math 201, Section 001, Fall 2009

Name (print): _____

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. Find the decimal expansion of $\frac{49}{132}$. Clearly show the repeating digits.

The remainder of 16 is a repeat: it showed up two divisions ago. So the 12 digits will now repeat infinitely many times. The answer is $0.3712121212 \cdots = 0.3712$.

Problem 2. Prove that:

- (a) If a and b are rational then 5a 7b is rational.
- (b) If x is irrational then $\sqrt[3]{x+1}$ is irrational.

Solution:

(a) Since a and b are rational, there exist $x, y, u, v \in \mathbb{Z}$, $y, v \neq 0$ such that a = x/y, b = u/v. Then

$$5a - 7b = 5\frac{x}{y} - 7uv = \frac{5xv - 7uy}{yv}$$

and $5xv - 7uy, yv \in \mathbb{Z}, yv \neq 0$. Hence 5a - 7b is rational.

(b) Prove the contrapositive: If $\sqrt[3]{x+1}$ is rational then x is rational. We have, for some $a, b \in \mathbb{Z}$, $b \neq 0$,

$$\sqrt[3]{x+1} = \frac{a}{b}, \quad x+1 = \frac{a^3}{b^3}, \quad x = \frac{a^3 - b^3}{b^3},$$

Since $a^3 - b^3 \in \mathbb{Z}$ and $b^3 \in \mathbb{Z}$. $b^3 \neq 0$, x is rational. The contrapositive is shown. Since the contrapositive is equivalent to the original implication, we are done.

Problem 3. Write down an explicit formula for a bijection from natural numbers divisible by 17 to \mathbb{Z} .

Solution: First, a bijection from all natural numbers to \mathbb{Z} :

$$g(x) = \begin{cases} (x-1)/2 & \text{if } x \text{ is odd} \\ -x/2 & \text{if } x \text{ is even} \end{cases}$$

This maps 1 to 0, 2 to -1, 3 to 1, 4 to -2, 5 to 2, 6 to -3, etc. Now notice that if you take all natural numbers divisible by 17 and you divide each of them by 17, you'll get all natural numbers; in other words, h(x) = x/17 is a bijection from natural numbers divisible by 17 to natural numbers. Now compose h with g, and get a bijection from natural numbers divisible by 17 to \mathbb{Z} :

$$f(x) = \begin{cases} (x/17 - 1)/2 & \text{if } x/17 \text{ is odd} \\ -(x/17)/2 & \text{if } x/17 \text{ is even} \end{cases}$$

Problem 4. Suppose that x is a rational number such that x^2 is an integer. Prove that x is an integer.

Solution: Since x is rational, there exist $a, b \in \mathbb{Z}$, $b \neq 0$, gcd(a, b) = 1 such that $x = \frac{a}{b}$. Then $x^2 = \frac{a^2}{b^2}$. x^2 is an integer, so $x^2 = c$ for some $c \in \mathbb{Z}$. Thus $\frac{a^2}{b^2} = c$ and $a^2 = b^2c$. Clearly, $c|a^2$. Because $gcd(a^2, b^2) = 1$, $a^2|c$. (This is right, since Proposition 2.28 in the textbook says so.) Because $c|a^2$ and $a^2|c$, it must be that $c = a^2$. (It can not be that $c = -a^2$ because $c \geq 0$.) Since $c = a^2$, we have $a^2 = b^2a^2$ and either a = 0, in which case x = 0 and x is rational, or $a \neq 0$ and thus $b = \pm 1$. Then $x = \pm a$ and so x is an integer.

There are other ways to do this, for example using prime number decompositions of a and b.

Note that the proof given above used the fact that gcd(a,b) = 1 implies $gcd(a^2,b^2) = 1$. It would be OK to just use it, but if you wanted to justify this, here is one way to do it. gcd(a,b) = 1 iff there exist integer x, y such that ax + by = 1. Then $(ax + by)^4 = 1$, and so

$$1 = a^4x^4 + 4a^3x^3by + 6a^2x^2b^2y^2 + 3axb^3y^3 + b^4y^4 = a^2(a^2x^4 + 4ax^3by) + b^2(6a^2x^2y^2 + 3axby^3 + b^2y^4)$$

which in turn implies that $gcd(a^2, b^2) = 1$.