Loyola University Chicago Math 201, Section 001, Fall 2009

Quiz 6 Sample

Name (print): _____ Signature: _____

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. Is the number 3.2457457457457457... rational or not? If yes, write it as a fraction. If not, give reasons.

Solution: the number is rational, because its decimal expansion is repeating. Let x = 3.2457457457457457457...Then

> 10x = 32.457457457457...,10000x = 32457.457457457...,

and consequently,

$$10000x - 10x = 32425$$

Hence

$$x = \frac{32425}{9990}$$

Problem 2. Prove that $\sqrt[4]{6}$ is not a rational number.

Solution: proof by contradiction. Suppose that $\sqrt[4]{6}$ is rational. Then there exist integer $a, b, b \neq 0$, gcd(a,b) = 1 such that $\sqrt[4]{6} = \frac{a}{b}$. Then $6b^4 = a^4$, and since $6 = 2 \cdot 3$, $2|a^4$. Because 2 is prime, 2|a, that is, a = 2c for some integer c. Then $6b^4 = (2c)^4$, hence $3b^4 = 8c^4$. Since 2|8, $2|3b^4$. As before, since 2 is prime, 2|3 (which is false) or $2|b^4$. The latter must hold, so, again because 2 is prime, 2|b. Hence 2|a and 2|b which contradicts gcd(a,b) = 1. Hence it was wrong to suppose that $\sqrt[4]{6}$ is rational, i.e., $\sqrt[4]{6}$ is irrational.

Problem 3. Write down an explicit formula for a bijection from \mathbb{Z} to \mathbb{N} .

Solution: check lecture notes.

Problem 4. Suppose that the coefficients a, b, c of the quadratic equation $ax^2 + bx + c = 0$ are rational and that the equation has two distinct solutions. How many of these solutions can be rational? Give all necessary examples and proofs.

Solution: It could be that both solutions are rational. For example, $x^2 - 1 = 0$. It could be that neither solution is rational. For example, $x^2 - 2 = 0$. It can not happen that one solution is rational and the other one is not. Indeed, let x_1 be a rational solution and x_2 be an irrational solution. Then

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = ax^{2} - a(x_{1} + x_{2})x + ax_{1}x_{2}$$

So $b = -a(x_1 + x_2)$ and (since $a \neq 0$ — why is that?) the right hand expression $-a(x_1 + x_2)$ is not rational (why?). But b was assumed rational. Impossible! Contradiction!