Loyola University Chicago Math 201, Spring 2010

In the "True or False" questions below, provide a proof if the answer is "True" or provide a counterexample if the answer is "False".

1. True or False: $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \ x - y^2 = 1$

Solution: False: take x = -7, then there is no real y such that $-7 = 1 + y^2$ because $1 + y^2 > 0$ for all $y \in \mathbb{R}$.

2. True or False: $3 \in \{x \in \mathbb{R}; x^2 + 8 \le 6x\} \cap \{y \in \mathbb{Z}; y^4 \le 128\}.$

Solution: True: $3 \in \{x \in \mathbb{R} ; x^2 + 8 \le 6x\}$ because $3 \in \mathbb{R}$ and $3^2 + 8 \le 6 \cdot 3$, and $3 \in \{y \in \mathbb{Z} ; y^4 \le 128\}$ because $3 \in \mathbb{Z}$ and $3^4 \le 128$.

3. True or False: P AND $Q \iff [(P \text{ AND } (\text{NOT } P)) \implies (P \implies (\text{NOT } Q))]$

Solution: False. Use truth table. Another solution: note that $(P \ AND \ (NOT \ P))$ is always false so the implication $(P \ AND \ (NOT \ P)) \implies (P \implies (NOT \ Q))$ is always true. But $P \ AND \ Q$ is only true if P and Q are true.

4. True or False: For every integer x and y, xy is divisible by 4 if and only if x is even and y is even.

Solution: False: take x = 4, y = 1. Then xy = 4 is divisible by 4 but y is NOT even.

5. Express each of the statements below as a logical expression using quantifiers.

There is a smallest positive integer.

Solution:

$$\exists x \in \mathbb{Z}, x > 0 \ \forall y \in \mathbb{Z}, y > 0 \ x \le y$$

There is no smallest positive real number.

Solution:

$$NOT \ (\exists x \in \mathbb{R}, x > 0 \ \forall y \in \mathbb{R}, y > 0 \ x \le y) \qquad or \qquad \forall x \in \mathbb{R}, x > 0 \ \exists y \in \mathbb{R}, y > 0 \ y < x$$