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1 Brief review of basic differential equations

A differential equation is an equation involving a function and one or more of the function’s

derivatives. An initial value problem consists of a differential equation and initial conditions
specifying the value/values of the function and/or of the function’s derivatives at a certain

point.

Example 1.1 The height h, as a function of time t, of a body falling due to force of gravity
and without friction is described by the differential equation

d2h

dt2
= g, (1)

where g is the constant acceleration (in metric system, g = −9.81m/s2). In different

notation, h′′(t) = g. Integration yields

h′(t) = gt+ c, h(t) =
1

2
gt2 + ct+ d,

where c and d are real constants. Hence, h(t) = 1
2gt

2 + ct+d is a solution to (1). The heigh

h as above, of a body which at time t = 0 is at height 40 and has velocity 5, is described
by the initial value problem

d2h

dt2
= g, h(0) = 40,

dh

dt
(0) = 5. (2)

Since the general solution to the differential equation in (2) is given by h(t) = 1
2gt

2 + ct+d,
one just needs to determine the constants c and d that cause the solution to satisfy the

initial conditions h(0) = 40 and h′(0) = 5:

h(0) =
1

2
g02 + c0 + d = d = 40, h′(0) = g0 + c = 5,

and so d = 40, c = 5, and the unique solution to (2) is h(t) = 1
2gt

2 + 5t + 40. In more

generality, the unique solution to the initial value problem

h′′(t) = g, h(0) = h0, h
′(0) = v0 (3)

is

h(t) =
1

2
gt2 + v0t+ h0. (4)
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If the values of h and h′ are predescribed at time t0 which is not necessarily 0, one can rely

on the general solution h(t) = 1
2gt

2 + ct+ d and use the initial conditions h(t0) = h0 and
h′(t0) = v0 to determine c and d:

h(t0) =
1

2
gt20 + ct0 + d = h0, h

′(t0) = gt0 + c = v0

which imply that c = v0 − gt0, d = h0 − 1
2gt

2
0 − (v0 − gt0)t0 and so

h(t) =
1

2
gt2 + (v0 − gt0)t+ h0 −

1

2
gt20 − (v0 − gt0)t0 =

1

2
g(t− t0)

2 + v0(t− t0) + h0,

where the last expression is obtained from the previous one through some algebra. Note
that the last expression can be deduced from (4) by considering t− t0, the amount of time
after t0. 4

Example 1.2 Consider the differential equation

y′′ + 3y′ − 10y = 0. (5)

To confirm that y1(t) = e2t is a solution to (5), take the derivatives y′1(t) = 2e2t, y′′1 (t) = 4e2t

and plug them into the equation to get 4e2t + 3 · 2e2t − 10e2t = 0, which is true because

4 + 6 − 10 = 0. Similarly, one confirms that y2(t) = e−5t is a solution to (5).
The differential equation (5) is a linear differential equation, because it has the form

An(t)y(n)(t) +An−1(t)y
(n−1)(t) + · · ·+ A1(t)y

′(t) +A0(t)y(t) = Q(t), (6)

where y(n) denotes the n-th derivative of y, and An, An−1, . . .A1, A0, Q are some functions
of t. In (5), A2 = 1, A1 = 3, A0 = −10, while Q and all other An are 0. Because An = 0

for n > 2 and A2 6= 0, (5) is a second order equation. Because A2, A1, A0 are constant, (5)
is a second order equation with constant coefficients. Finally, because the right-hand side
is 0, it is a homogeneous second order equation with constant coefficients.

The practical aspect of linearity and homogeneity of (5) is that any linear combination
of solutions to (5) is a solution to (5). Two previously guessed solutions are y1(t) = e2t,

y2(t) = e−5t, but the reasoning below works for any other two solutions y1, y2 to For some
fixed α, β ∈ R, let

y(t) = αy1(t) + βy2(t).

Then

y′′ + 3y′ − 10y = (αy1 + βy2)
′′ + 3(αy1 + βy2)

′ − 10(αy1 + βy2)

= αy′′1 + βy′′2 + 3(αy′1 + βy′2)− 10(αy1 + βy2)
= α

(

y′′ + 3y′ − 10y
)

+ β
(

y′′ + 3y′ − 10y
)

= α · 0 + β · 0 = 0.

Hence, y is a solution to (5).
With the two solutions y1(t) = e2t, y2(t) = e−5t to (5), let’s solve the initial value

problem
y′′ + 3y′ − 10y = 0, y(0) = 4, y′(0) = 1. (7)

Neither y1(t) = e2t nor y2(t) = e−5t satisfy the initial conditions y(0) = 4, y′(0) = 1.

However, the general solution y(t) = αy1(t) + βy2(t) might, with an appropriate choice of
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constants α and β. The condition y(0) = 4 turns to α+ β =, the condition y′(0) = 1 turns

to 2α − 5β = 1. Solving the system of two equations for α and β yields α = 3, β = 1.
Hence, y(t) = 3y1(t) + y2(t) is the solution to (7).

Finally, note that the solutions y1(t) = e2t nor y2(t) = e−5t to (5) can be found by first
solving the quadratic characteristic equation of to (5): r2 + 3r− 10 = 0, which gives r = 2

or r = −5. Other homogeneous second order linear differential equations, for which the
characteristic equations have a repeated real root or complex roots, are solved similarly.
See [1, Chapter 3] or [3, Chapter 4] for details. 4

Example 1.3 Consider the differential equation

dx

dt
= x2. (8)

It is a separable equation: all occurrences of x can be moved to one side of the equation

while all occurrences of t can be moved to the other side. One obtains

dx

x2
= dt,

∫

dx

x2
=

∫

dt, −1

x
= t+ c

and ultimately,

x(t) =
1

c− t
,

where c is a constant. Consider the function y(t) = 7x(t) =
7

c− t
. Note that

dy

dt
=

7

(c− t)2
6= 49

(c− t)2
= y2

and thus y is not a solution to (8). Consequently, (8) is not a linear differential equation,

which could have been concluded by noticing the x2 term anyway. 4

Example 1.4 Given sufficient room and feed, the population of bunnies, the size of which

at time t is b(t), grows exponentially according to

b′(t) = αb(t), (9)

where α > 0 is some constant. The equation (9) is a homogeneous first order linear differ-
ential equation, and the solution to it is

b(t) = b(0)eαt.

Note that the function above is well-defined for all t ∈ R. Similarly, given sufficient room
and no bunnies to eat, the population of wolves, the size of which at time t is w(t), decays

exponentially according to
w′(t) = −βw(t),

where β > 0 is some constant. When the populations of bunnies and wolves interact,

bunnies get eaten by wolves, which has a negative effect on the former but a positive effect
on the latter. This can be modeled by the system of differential equations

b′(t) = αb(t) − γb(t)w(t), w′(t) = −βw(t) + δb(t)w(t), (10)

where γ, δ > 0 are some constants. The terms γb(t)w(t), δb(t)w(t) appear because the
number of interactions between bunnies and wolves is proportional to the product b(t)w(t).

4
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Example 1.5 Given insufficient room and feed, the population of bunnies b(t) does not

grow exponentially. Rather, it can be modeled by

b′(t) = αb(t) (m− b(t)) , (11)

where α,m > 0 are some constants. Note that when b(t) > m then b′(t) < 0, when
0 < b(t) < m then b′(t) > 0, and when b(t) < 0 — which has no practical interpretation

in terms of bunnies — b′(t) < 0. Furthermore, b(t) ≡ 0 and b(t) ≡ m are two constant
(equilibrium) solutions to (11). The solution to the initial value problem consisting of (11)

and b(0) = b0 decreases from b0 to m if b0 > m and increases from b0 to m if 0 < b0 < m.
This can be verified explicitly, because (11) is separable and can be solved. As long as

b(t) 6= 0, b(t) 6= m, one obtains

db

dt
= αb(m− b),

db

b(m− b)
= αdt,

1

m

(

1

b
+

1

m− b

)

db = αdt,

(

1

b
− 1

b−m

)

db = αmdt

and thus

ln |b| − ln |b−m| = αmt+ c, ln

∣

∣

∣

∣

b

b−m

∣

∣

∣

∣

= αmt+ c,

∣

∣

∣

∣

b

b−m

∣

∣

∣

∣

= eceαmt.

Because
∣

∣

∣

b
b−m

∣

∣

∣
= ± b

b−m
, one then obtains, with a constant d which can be positive or

negative,
b

b−m
= deαmt

and solving this for b yields

b(t) =
dm

d− e−αmt
.

Consider, for example, an initial condition b(0) = 3m. Then 3m = dm
d−1 yields d = 3

2 and

then b(t) = 3m
3−2e−αmt , which is a decreasing function with limt→∞ b(t) = m. If b(0) = m/2

then d = −1 and b(t) = m
1+e−αmt , which is an increasing function with limt→∞ b(t) = m.

4

2 Examples of simple control problems

Example 2.1 Consider a cart moving along an infinite track (the x-axis) with no friction.
The cart has two rocket engines attached to it; one firing to the right (in the positive

direction), one firing to the left (in the negative direction). Let x(t) be the position of the
cart along the track at time t, so that ẋ(t) is the velocity, and ẍ(t) is the acceleration. For

simplicity, suppose that the mass of the cart and the force applied to the cart by either of
the rocket engines is 1. The differential equations describing the motion of the cart are as

follows:

ẍ(t) = 0 if both engines are off;

ẍ(t) = −1 if the right engine is on;

ẍ(t) = 1 if the left engine is on.
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Suppose that, at time 0, x(0) = 12 and ẋ(0) = −3; in other words, that the cart is at

x = 12 and is moving to the left with speed 3. How should one switch the engine (or
engines) on and off in order to make the rocket cart stop at the origin at some time T > 0

(i.e., x(T ) = 0, ẋ(T ) = 0) ? One idea is to do nothing for a while, let the cart roll to the
left, then, at some time T0, fire the left engine and let it run until the velocity is 0. T0 must

be picked carefully, so that the cart stops at 0, not elsewhere. The velocity of the cart after
T0, with the left engine running, solves the initial value problem

ẋ(T0) = −3, ẍ(t) = 1

and thus, for t ≥ T0 and as long as the engine is running,

ẋ(t) = −3 + t− T0.

We want the cart to stop at some (unknown for now) time T , so we want ẋ(T ) = 0, and
thus

0 = −3 + T − T0.

Consequently, T = T0+3, in common words, the cart stops after 3 seconds of the left engine
running. The question now is, what should this T0 be for the cart to stop at 0, i.e, with

x(T ) = 0. For t ∈ [0, T0], the position of the cart solves the initial value problem

x(0) = 12, ẋ(0) = −3, ẍ(t) = 0

and thus, for t ∈ [0, T0],
x(t) = 12− 3t,

and in particular, x(T0) = 12 − 3T0 and ẋ(T0) = −3. For t ∈ [T0, T ], the position of the

cart solves the initial value problem

x(T0) = 12− 3T0, ẋ(T0) = −3, ẍ(t) = 1

and thus, for t ∈ [T0, T ],

x(t) = 12 − 3T0 − 3(t− T0) +
1

2
(t− T0)

2,

and in particular, x(T ) = x(T0 + 3) = 12 − 3T0 − 32 + 1
232. We need x(T ) = 0, so

0 = 12 − 3T0 − 32 + 1
232 and consequently, T0 = 2.5. Hence, a winning strategy is:

? Do nothing for 2.5 seconds. Then, start the left engine and run it for 3 seconds. Then

switch the engine off and keep both engines off forever.

Some questions arise about the strategy above, they are formulated in the problem below.
4

Problem 2.2 The questions below pertain to Example 2.1. First, two questions regarding
the strategy ?.

(a) What is the result of the strategy if the initial condition x(0) = 12 was not accurate?

For example, what if x(0) = 11.8 and the same strategy is used?

(b) What is the result of the strategy if the initial condition x′(0) = −3 was not accurate?

For example, what if x′(0) = −3.1 and the same strategy is used?
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More interesting questions arise for other initial conditions.

(c) Suppose that x(0) = 10, ẋ(0) = −2. What is a strategy that makes the rocket cart stop

at the origin at some time T > 0.

(d) Suppose that x(0) = 12, ẋ(0) = −8. What is a strategy that makes the rocket cart stop

at the origin at some time T > 0.

(e) If one obtained a particular strategy in (b), can one find another strategy that obtains
the same goal with less fuel consumption (less time of fuel burning)?

(f) Suppose that x(0) = 12, ẋ(0) = −8. What is the infimum of the fuel burning time
over all strategies that stop the car at the origin at some time T > 0?

Problem 2.3 This problem is about driving the rocket cart to the origin in the shortest
possible time. (Note: this is very different from using as little fuel as possible, i.e., from

firing the engines for as little time as possible.) For that purpose, common sense suggests
that coasting, i.e., having both engines off, is never an appropriate thing to do unless the
cart is already at the origin and stopped. Hence, the rocket cart moves along the x-axis

according to the differential equations

ẍ(t) = −1 if the right engine is on;

ẍ(t) = 1 if the left engine is on.

Answer the following questions:

(a) Suppose that x(0) = 10, ẋ(0) = −2. What is a strategy that makes the rocket cart stop

at the origin in the shortest possible time?

(b) Suppose that x(0) = 12, ẋ(0) = −8. What is a strategy that makes the rocket cart stop

at the origin in the shortest possible time?

Example 2.4 Let z(t) denote the temperature in a room with a heater which can be on

or off. Let zoff be the natural temperature of the room with the heater off and zon the
natural temperature of the room with the heater on. If the heater is off, the temperature
z(t) evolves according to

z′(t) = −α(z(t) − zoff ),

where α > 0 is some constant. If the heater is on, the temperature z(t) evolves according

to
z′(t) = −β(z(t) − zon).

For simplicity, suppose that zoff = 40, zon = 80, α = ln2, and β = ln1.5 and further-
more, say that z(0) = 50. How should one switch the thermostat on and off in order to

raise the temperature to be in between 60 and 65 and later keep the temperature in that
range? 4
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3 Standard Form

The standard form of an autonomous differential equation is

ẋ = f(x), (12)

where x ∈ R
n and f : R

n → R
n is a function. Similarly, the standard form of an non-

autonomous differential equation is

ẋ = f(x, t), (13)

where x ∈ R
n, t ∈ R, and f : R

n+1 → R
n is a function. The standard form of an autonomous

control system is

ẋ = f(x, u), (14)

where x ∈ R
n is the state of the system, u ∈ R

k is the control input, and f : R
n+k → R

n is
a function.

Example 3.1 To write the differential equation y′′ + 3y′ − 10y = 0 of Example 1.2 in the
form (12), let x1 = y, x2 = y′ and note that ẋ1 = y′ = x2, which comes from the choice of

x1, x2 while ẋ2 = y′′ = 10y− 3y′ = 10x1 − 3x2, which comes from the differential equation.

Then, with x =

(

x1

x2

)

∈ R2, one obtains

˙(

x1

x2

)

=

(

ẋ1

ẋ2

)

=

(

x2

10x1 − 3x2

)

=

(

0 1
10 −3

)(

x1

x2

)

.

Thus ẋ = Ax with A =

(

0 1

10 −3

)

4

Example 3.2 The system of differential equations (10) from the predator prey Example
1.4 becomes

˙(

x1

x2

)

=

(

ẋ1

ẋ2

)

=

(

αx1 − γx1x2

−βx2(t) + δx1x2

)

(15)

after the change of variables x1 = b, x2 = w. Here, ẋ = f(x) with f(x) =

(

αx1 − γx1x2

−βx2(t) + δx1x2

)

.

4

Example 3.3 The rocket cart in Example 2.1, with x1 denoting the position and x2 = ẋ1

denoting the velocity of the cart and the control u being either −1, 0, or 1, takes the form

˙(

x1

x2

)

=

(

x2

u

)

=

(

0 1
0 0

)(

x1

x2

)

+

(

0
1

)

u (16)

4
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4 Linear Systems

This section considers autonomous and homogeneous linear differential equations of first
order, or linear systems in short, of the form

ẋ = Ax (17)

where x ∈ R
n and A is a real n × n matrix, i.e., A ∈ R

n×n.

Recall first that linear differential equations as in (6), when homogeneous, and when
brought to standard form, take the shape of (17). Solving linear equations (6) of second

order, for example y′′+3y′−10y = 0 from Example 1.2 can be done without matrix methods.
This is discussed in [1, Chapter 3] or [3, Chapter 4].

Note that if λ ∈ R is an eigenvalue of A with an associated eigenvector v ∈ R
n, that is,

when Av = λv, then eλtv solves (17). Indeed,

˙(eλtv) = eλtλv = eλtAv = A
(

eλtv
)

.

Furthermore, given several such eigenvalues and eigenvectors λi, v
i and constants ci, i =

1, 2, . . . , m, one can easily check that

m
∑

i=1

cie
λitvi is a solution to (17). Hence, solving liner

systems (17) with matrix analysis tools works particularly well when A has n independent
eigenvectors, which is in particular true when A has n distinct real eigenvalues. This is

illustrated in the example below.

Example 4.1 Let A =

(

1 1

4 1

)

. To find eigenvalues, set the determinant of

(

1− λ 1

4 1 − λ

)

to 0 and solve for λ. (1 − λ)2 − 4 = 0 yields two eigenvalues λ1 = 3, λ2 = −1. To find an
eigenvalue v1, solve Av1 = λ1v

1, so (A− 3I)v1 = 0, so

(

−2 1
4 −2

)(

v1

v2

)

=

(

0
0

)

.

Get v1 =

(

1

2

)

, and similarly, get v2 =

(

1

−2

)

. Note that v1 and v2 are linearly independent

(this always happens for distinct real eigenvalues — why?) and so any initial value problem

ẋ =

(

1 1
4 1

)

x, x(0) = x0

can be solved by picking constants c1, c2 in the general solution

x(t) = c1e
3t

(

1

2

)

+ c2e
−t

(

1

−2

)

to match the initial condition x(0) = x0. 4

Exercise 4.2 Find the solution to

ẋ =





2 2 0
−2 1 4

3 1 −4



 x, x(0) =





1
2

3



 .

8



The situation is less simple when there is no n linearly independent eigenvectors for A.

The following fact helps with the analysis of (17).

Fact 4.3 For every A ∈ R
n×n there exists a nonsingular matrix M ∈ R

n×n and a matrix
J ∈ R

n×n in real Jordan form so that

A = MJM−1, J = M−1AM.

Consider the change of coordinates

z = M−1x, x = Mz.

Then ẋ = Ax turns to M−1ẋ = M−1AMM−1x, so ˙(M−1x) = J(M−1x), and hence

ż = Jz. (18)

Advantages of dealing with (18) rather than (17) are due to the form of J.

4.1 Linear systems in 2 dimensions

For 2× 2 matrices, the real Jordan form can take the following forms:

(

λ1 0
0 λ2

)

,

(

λ 0
0 λ

)

,

(

λ 1
0 λ

)

,

(

α −β
β α

)

, (19)

and these forms occur, respectively, when A has two distinct real eigenvalues λ1, λ2; when A
has a single (repeated) real eigenvalue λ and two distinct eigenvectors; when A has a single

(repeated) real eigenvalue λ and one eigenvector; and when A has complex eigenvalues
α+ iβ, α − iβ. The examples below follow the general discussion in [2].

The case of A having two distinct real eigenvalues λ1, λ2 is illustrated first.

Example 4.4 Let

A =

(

−1 2
−3 4

)

=

(

1 2
1 3

)(

1 0
0 2

)(

3 −2
−1 1

)

so in this case M =

(

1 2
1 3

)

, J =

(

1 0
0 2

)

, and M−1 =

(

3 −2
−1 1

)

. Note that AM = MJ

and so
(

−1 2
−3 4

)(

1 2
1 3

)

=

(

1 2
1 3

)(

1 0
0 2

)

=

(

1 · 1 2 · 2
1 · 1 2 · 3

)

which shows that
(

−1 2
−3 4

)(

1
1

)

= 1 ·
(

1
1

)

,

(

−1 2
−3 4

)(

2
3

)

= 2 ·
(

2
3

)

.

Thus λ1 = 1 is an eigenvalue of A with eigenvector x1 =

(

1
1

)

and λ2 = 3 is an eigenvalue

of A with eigenvector x2 =

(

2
3

)

. Note that M−1x1 =

(

1
0

)

, M−1x2 =

(

0
1

)

.
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Now, let φ(t) be a solution to (17). Let ψ(t) = M−1φ(t) and note that ψ(t) solves (18).

Write ψ(t) as

(

ψ1(t)

ψ2(t)

)

. Then (18) turns to

(

ψ̇1(t)

ψ̇2(t)

)

=
˙(

ψ1(t)

ψ2(t)

)

=

(

1 0

0 2

)(

ψ1(t)

ψ2(t)

)

=

(

ψ1(t)

2ψ2(t)

)

and ψ1(t) satisfies ψ̇1(t) = ψ1 while ψ2(t) satisfies ψ̇2(t) = 2ψ2. Consequently, ψ1(t) =
ψ1(0)et, ψ2(t) = ψ2(0)e2t, and so

ψ(t) =

(

ψ1(0)et

ψ2(0)e2t

)

= ψ1(0)et
(

1
0

)

+ ψ2(0)e2t

(

0
1

)

Such solutions ψ(t) can then be easily sketched in the z coordinate system, and later trans-

lated to the x coordinate system. Explicitly, the solution φ(t) to (17) is

φ(t) = Mψ(t) =

(

1 2
1 3

)(

ψ1(0)et

ψ2(0)e2t

)

=

(

ψ1(0)et + 2ψ2(0)e2t

ψ1(0)et + 3ψ2(0)e2t

)

= ψ1(0)et
(

1
1

)

+ψ2(0)e2t

(

2
3

)

Given the general form

c1e
t

(

1

1

)

+ c2e
2t

(

2

3

)

of a solution to ẋ =

(

−1 2
−3 4

)

x, the solution to this differential equation with the ini-

tial condition x(0) =

(

2
−1

)

is found by picking the constants c1 and c2 to satisfy the

initial condition. One obtains ψ1(0) = 8, ψ2(0) = −3, and consequently the solution is

8et
(

1

1

)

− 3e2t

(

2

3

)

4

Similar analysis can be done when A has two distinct nonzero real eigenvalues of different
signs, for example

A =

(

3 2
6 −1

)

=

(

−1 1
3 1

)(

−3 0
0 5

)(

−1/4 1/4
3/4 1/4

)

and when A has two distinct negative eigenvalues, for example

A =

(

−8 1
−5 −2

)

=

(

1 1
1 5

)(

−7 0
0 −3

)(

5/4 −1/4
−1/4 1/4

)

The situation when A has a single (repeated) nonzero real eigenvalue λ with two eigenvectors

is also similar but not all that interesting: in such a case, A =

(

λ 0

0 λ

)

. The situation is

more interesting when to such a single eigenvalue there corresponds only one eigenvector.

The following example illustrates this.

Example 4.5 Let

A =

(

−17 9
−25 13

)

=

(

3 1
5 2

)(

−2 1
0 −2

) (

2 −1
−5 3

)

10



Here λ = −2 is the unique (repeated) eigenvalue of A with eigenvector x1 =

(

3

5

)

. Solving

˙(

z1
z2

)

=

(

−2 1

0 −2

)(

z1
z2

)

yields z2(t) = z2(0)e−2t, z1(t) = (z1(0) + z2(0)t)e−2t. Correspondingly,

x(t) = Mz(t) =

(

3 1
5 2

)(

(z1(0) + z2(0)t)e−2t

z2(0)e−2t

)

=

(

3 1
5 2

)(

z1(0)
z2(0)

)

e−2t +

(

3
5

)

z2(0)te−2t

and consequently

x(t) = x(0)e−2t +

(

3
5

)

(−5x1(0) + 3x2(0))te−2t

Both z1 and z2 tend to 0 as t→ ∞, same for x1 and x2. 4

Now, to practice working in more generality, suppose that

A = M

(

α −β
β α

)

M−1

which corresponds to A having complex eigenvalues α ± iβ. Then z = M−1x evolves
according to

ż =

(

α −β
β α

)

z.

It is illustrative to look at r =
√

z2
1 + z2

2 , θ = arctan
z1
z2

.

ṙ =
2z1ż1 + 2z2ż2

2
√

z2
1 + z2

2

=
z1(αz1 + βz2) + z2(−βz1 + αz2)

√

z2
1 + z2

2

= α
√

z2
1 + z2

2 = αr

θ̇ =
1

1 +
(

z1
z2

)2

ż1z2 − z1ż2
z2
2

=
1

z2
2 + z2

1

((αz1 + βz2)z2 − z1(−βz1 + αz2)) = β

That is, ṙ = αr, so r grows or decays exponentially or stays constant depending on α, and
θ̇ = β, so θ changes grows or decays linearly or stays constant depending on β. The actual
solutions (see [3, Section 9.6]) are

(

z1(t)
z2(t)

)

=

(

eαt cosβtz1(0)− eαt sin βtz2(0)
eαt sinβtz1(0) + eαt cos βtz2(0)

)

= eαt

(

cosβt − sin βt
sin βt cos βt

)(

z1(0)
z2(0)

)

and so z(t) = eαt

(

cosβt − sin βt

sinβt cos βt

)

z(0). It is fun to verify that this is a solution using

matrix notation.

Exercise 4.6 Let

A =

(

21 −10

26 −11

)

=

(

2 1

3 2

)(

5 −2

2 5

)(

2 −1

−3 2

)

Find a solution to ẋ = Ax with x(0) = (4, 6) by finding the corresponding z(0), using this

initial condition to solve ẋ = Jz, and then finding the solution x = Mz.
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Exercise 4.7 Find a general solution to ẋ = Ax if

A =





−35/6 1/6 1

5/6 −31/6 5
−5/3 −5/3 1



 =





−1 0 1

1 0 5
0 1 3









−6 0 0

0 −2 −1
0 1 −2









−5/6 1/6 0

−1/2 −1/2 1
1/6 1/6 0





It remains to discuss the cases of one or both eigenvalues being 0.

4.2 Matrix exponential

Given a n× n matrix A, the matrix exponential of A, eA, is defined as

eA = I + A+
1

2!
A2 +

1

3!
A3 + . . . .

Ignring the issues of convergence of the infinite series involved, one can show directly from
the definition of eA that eλI = eλI for any A ∈ R

n×n, λ ∈ R; eA+B = eAeB for any

A,B ∈ R
n×n; d

dt
eAt = AeAt A ∈ R

n×n, t ∈ R; and eA = MeJM−1, eAt = MeJtM−1 if
A = MJM−1. For example, if A = MJM−1 then A2 = MJM−1MJM−1 = MJ2M−1

and, similarly, Ai = MJ iM−1 for i = 3, 4, . . . , and consequently

eAt = I + At+
1

2!
(At)2 +

1

3!
(At)3 + . . .

= I + At+
1

2!
A2t2 +

1

3!
A3t3 + . . .

= I +MJM−1t+
1

2!
MJ2M−1t2 +

1

3!
MJ3M−1t3 + . . .

= MIM−1 +MJtM−1 +M
1

2!
J2t2M−1 +M

1

3!
J3t3M−1 + . . .

= M

(

I + Jt+
1

2!
J2t2 +

1

3!
J3t3 + . . .

)

M−1

= MeJtM−1.

These properties then imply that the solution (assuming there is only one) to the initial
value problem ẋ = Ax, x(0) = x0 is provided by

x(t) = eAtx0.

Indeed, then d
dtx(t)

d
dt

(

eAtx0
)

= d
dt

(

eAt
)

x0 = AeAtx0 = Ax(t). It is instructive to verify

this based on the matrix A in one of the following forms:

(

λ1 0

0 λ2

)

,

(

λ 0

0 λ

)

, or

(

λ 1

0 λ

)

,

with the last case handled by looking at

(

0 1

0 0

)

first. The real Jordan form representation

of A may help with computing eAt because

eAt = eMJM−1t = MeJtM−1.

The special structure of J makes it easier to find eJt in comparison to a general matrix A.

If J = diag{λi} then eJt = diag
{

eλit
}

. If λ ∈ R is such that (J −λI)p = 0 for some p ∈ N,

then

eJt = eλtIe(J−λI)t = eλt

(

I + (J − λI)t+
1

2!
(J − λI)2t2 + · · ·+ 1

(p− 1)!
(J − λI)p−1tp−1

)

.

The advantage of such an expression is that it is not an infinite series; rather, it has finitely

many terms.
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Example 4.8 Let J =





−2 0 0

0 3 1
0 0 3



. Then

J − 3I =





−5 0 0

0 0 1
0 0 0



 , (J − 3I)2 =





(−5)2 0 0

0 0 0
0 0 0



 , . . . , (J − 3I)q =





(−5)q 0 0

0 0 0
0 0 0





for every q > 2 and hence

eJt = e3t



I +





−5 0 0
0 0 1

0 0 0



 t+

∞
∑

i=2





(−5)iti 0 0
0 0 1

0 0 0







 = e3t





e−5t 0 0
0 1 t

0 0 1



 =





e−2t 0 0
0 e3t te3t

0 0 e3t





4

Exercise 4.9 Find eJt for J =





2 1 0

0 2 1
0 0 2



.

4.3 Large matrices

Knowing how to solve differential equations ż = Jz with a 2 × 2 matrix J in the form

(

λ1 0

0 λ2

)

,

(

λ 0

0 λ

)

,

(

λ 1

0 λ

)

,

(

α −β
β α

)

,

lets one deal with larger matrices J that may show up as a real Jordan form of a large

matrix A. For example, suppose that A = MJM−1 with

J =

















λ1 0 0 0 0 0
0 λ2 0 0 0 0

0 0 λ3 1 0 0
0 0 0 λ3 0 0

0 0 0 0 α −β
0 0 0 0 β α

















,

Then ż = Jz breaks down into

ż1 = λ1z1, ż2 = λ2z2,
˙(

z3
z4

)

=

(

λ3 1
0 λ3

)(

z3
z4

)

,
˙(

z5
z6

)

=

(

α −β
β α

)(

z5
z6

)

Solutions to these four separate differential equations are obtained separately, following

Section 4.1. With given initial conditions, one obtains

z1(t) = eλ1tz1(0), z2(t) = eλ2tz2(0),

(

z3(t)
z4(t)

)

= eλ3t

(

1 t
0 1

)(

z3(0)
z4(0)

)

,

(

z5(t)
z6(t)

)

= eαt

(

cosβt − sinβt
sinβt cos βt

)(

z5(0)
z6(0)

)

,
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and consequently,

z(t) =

















eλ1tz1(0)
eλ2tz2(0)

eλ3t (z3(0) + tz4(0))
eλ3tz4(0)

eαt (cosβtz5(0)− sin βtz6(0))
eαt (sinβtz5(0) + cos βtz6(0))

















Unfortunately, the discussion above does not cover all the smaller “blocks” that may show
up in a real Jordan form of a matrix. One example of another kind of a “block” is in

Example 4.9. Another is:








α −β 1 0

β α 0 1
0 0 α −β
0 0 β α









(20)

Exercise 4.10 Find eJt if J is given by (20).

4.4 Non-autonomous linear systems

Exercise 4.10 can be nicely handled by relying on the general framework for solving

ẋ = Ax+ b(t) (21)

where, as before, x ∈ Rn, A is a real n × n matrix, i.e., A ∈ Rn×n, and b : [0,∞) → Rn is

a vector-valued function. Equipped with the notion of the matrix exponential, the solution
goes as follows:

ẋ(t) − Ax(t) = b(t), e−Atẋ(t) − e−AtAx(t) = e−Atb(t),
d

dt

(

e−Atx(t)
)

= e−Atb(t)

and consequently e−Atx(t) =

∫ t

0

e−Asb(s) ds+ c. With an initial condition x(0), one gets

c = x(0), and the solution becomes

x(t) = eAt

(

x(0) +

∫ t

0
e−Asb(s) ds

)

.

4.5 Qualitative properties of solutions to linear systems

Several properties, of solutions to (17), given by ẋ = Ax, and (21), given by ẋ = Ax+ b(t),
are summarized below.

Given solutions x1, x2, . . . , xk to (17) on an interval [0, T ] and constants c1, c2, . . . , ck,
the function x defined by x(t) = c1x1(t) + c2x2(t) + · · ·+ ckxk(t) is a solution to (17). This
also holds for (21) if c1 + c2 + · · ·+ ck = 1.

In particular, if x : [0, T ] → R
n is a solution to (17) on some interval, then so is cx, for

any constant c. This homogeneity property means that local behavior and global behavior

of solutions to (17) is the same: for example, the saddle point behavior of solutions to (17)
with a 2×2 matrixA with one negative and one positive real eigenvalue, is visible no matter

how close one zooms in onto the origin or how far one zooms out.
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The result below, which will then lead to several properties of solutions to (17) and (21),

relies on the fact that for every n× n matrix A there exists a constant k ≥ 0 such that for
every vector x ∈ R

n,

‖Ax‖ ≤ k‖x‖.
In more technical language, this constant is the induced norm of A, usually denoted by
‖A‖, and defined by ‖A‖ = max

v,‖v‖≤1
‖Av‖.

Lemma 4.11 Let k ≥ 0 be such that for every vector x ∈ R
n, ‖Ax‖ ≤ k‖x‖. If y : [0, T ] →

R
n is a solution to (17) then, for every t ∈ [0, T ],

‖y(t)‖ ≤ ekt‖y(0)‖.

Proof. Consider the function α : [0, T ] → [0,∞) given by α(t) = ‖y(t)‖2. Then α is
differentiable, because y and the norm squared are, and

d

dt
α(t) = 2y(t)·ẏ(t) = 2y(t)·Ay(t) ≤ 2‖y(t)‖‖Ay(t)‖ ≤ 2‖y(t)‖k‖y(t)‖ = 2k‖y(t)‖2 = 2kα(t),

where the first inequality just says that the dot product of two vectors u and v is bounded
above by ‖u‖‖v‖. Hence d

dt
α(t) ≤ 2kα(t) and consequently α(t) ≤ e2ktα(0). Then, ‖y(t)‖ ≤

ekt‖y(0)‖.
First consequence of Lemma (4.11) is that the size of a solution x to (17) is bounded

above, for any t in the domain of x, by an exponential function of t. Thus, there are no
solutions x : [0, T ) → Rn to (17) such that limt→T ‖x(t)‖ = ∞. In other words, solutions to

autonomous and homogeneous linear systems do not experience finite-time blow-up. This
is in contrast to simple nonlinear differential equations, for example dx

dt
= x2 from Example

1.3. For x(0) > 0, solutions have the form x(t) =
1

1
x(0)

− t
and so limt→ 1

x(0)
‖x(t)‖ = ∞.

Let x1, x2 : [0, T ] → Rn be two solutions to (21) with x1(0) = x2(0). Consider y :

[0, T ] → R
n defined by y(t) = x1(t) − x2(t), which is a solution to (17). Then, for some

k ≥ 0, ‖y(t)‖ ≤ ekt‖y(0)‖ = 0, and consequently x1(t) = x2(t) for all t ∈ [0, T ]. That is,

solutions to (21) are unique. This is in contrast to simple nonlinear differential equations,
see Example 6.1.

Let x1, x2 : [0, T ] → Rn be two solutions to (21). Consider y : [0, T ] → Rn defined by

y(t) = x1(t) − x2(t), which is a solution to (17). Then, for some k ≥ 0, ‖y(t)‖ ≤ ekt‖y(0)‖,
and consequently, for every t ∈ [0, T ],

‖x1(t) − x2(t)‖ ≤ ekt‖x1(0)− x2(0)‖ ≤ ekT ‖x1(0)− x2(0)‖,

where the constant ekT depends on the matrix A, the length T of the interval [0, T ], but

not on particular solutions x1, x2. One can conclude that, subject to their existence, the
solutions to (21) depend uniformly continuously on initial conditions: for every ε > 0, every

T > 0, there exists δ > 0 (which can be taken to be e−kT ε) such that for every initial point
x0 and every initial point x′0 with ‖x′0−x0‖ < δ, one has ‖x′(t)−x(t)‖ < ε for all t ∈ [0, T ],

where x, x′ : [0, T ] → R
n are solutions to (21) with initial conditions x0, x

′
0.

Problem 4.12 Let

x(t) =

(

x1(t)
x2(t)

)

, y(t) =

(

y1(t)
y2(t)

)
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be two solutions to the differential equation ẋ = Ax on the interval [0, T ] with A =

(

−1 2

−3 4

)

.

Let W (t) be the determinant of1
(

x1(t) y1(t)
x2(t) y2(t)

)

.

(a) Show that
dW

dt
= det

(

ẋ1(t) ẏ1(t)
x2(t) y2(t)

)

+ det

(

x1(t) x1(t)
ẋ2(t) ẏ2(t)

)

.

(b) Show that
dW

dt
= (a+ d)W.

(c) Prove that either x(t) and y(t) are linearly independent for every t ∈ [0, T ] or x(t)

and y(t) are linearly dependent for every t ∈ [0, T ].

5 Introduction to feedback control

The rocket cart as described in Example 2.1 moves according to ẍ(t) = 0 if both engines are

off, ẍ(t) = −1 if the right engine is on, and ẍ(t) = 1 if the left engine is on. In the example,
it was established that to make the cart stop at 0 given initial conditions x(0) = 12 and

ẋ(0) = −3, one applies the strategy ? which results in the position of the card x(t) solving
the differential equation ẍ(t) = u(t), where the function u : [0,∞) → {−1, 0, 1} is given by

u(t) =







0 if t ∈ [0, 2.5)

1 if t ∈ [2.5, 5.5)
0 if t ∈ [5.5,∞)

The solution x : [0,∞) → R is then x(t) = 10 − 3t, t ∈ [0, 2.5); x(t) = 4.5 − 3(t − 2.5) +
1
2 (t− 2.5)2, t ∈ [2.5, 5.5); and x(t) = 0, t ∈ [5.5,∞). Questions (a) and (b) in Problem 2.2

showed that the desired outcome, the cart resting at 0 for all large enough t, is sensitive to
small changes in initial conditions. Using the same u(t) with the initial condition x(0) close

but not equal to 12 results in the cart resting but not at 0; using this u(t) with the initial
condition ẋ(0) close but not equal to −3 results in the cart moving with constant speed for
all t ≥ 5.5. In other words, different initial conditions require different strategies; in fact

strategies significantly different as underlined by question (d) in Problem 2.2. Would not
it be lovely to have one formula that determines when to fire which engine, independently

of the initial conditions? In other words, is there a function k : R
2 → {−1, 0, 1} so that

all solutions to the differential equation ẍ = k(x, ẋ) get to 0 and stop there? The problem

below attempts to find such a formula with an additional goal of minimizing the time it
takes the cart to get to 0.

Problem 5.1 This problem revisits the issue of driving the rocket cart to the origin in the
shortest possible time, treated before in Problem 2.3. Do the following:

(a) Knowing that x(t) = x0 + v0t ± 0.5t2, v(t) = v0 ± t, depending on whether the left

engine or the right engine is on, sketch two pictures, one for the case of the left engine
being on, one for the case of the right engine being on, showing the trajectories of the

rocket cart (its position and velocity) in the xv-plane.

1This function is called the Wronskian of x(t) and y(t).
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(b) Superimpose the two pictures and sketch the results of strategies from Problem 2.3 (a)

and (b) in the superimposed picture.

(c) Design a feedback control law for driving the cart to the origin in the shortest possible

time. That is, come up with a rule that determines whether the left or the right engine
should be running based on the state of the rocket cart, i.e., based on the current

position and velocity of the cart.

The answer to Problem 5.1 (c) is this: if the current state (x, v) of the cart is (0, 0),
that is, if the cart is resting at the origin, have both engines of. If not,

• use a = −1, that is, fire the right engine, if v ≥ 0 and x ≥ −1
2v

2 or if v < and x > 1
2v

2;

• use a = 1, that is, fire the left engine, if v ≤ 0 and x ≤ 1
2v

2 or if v > 0 and v < −1
2v

2.

A different way to formulate this is to consider a function α(x) =

{√
−2x if x < 0

−
√

2x if x ≥ 0
and

say that one should have a = −1 if v > α(x); one should have a = 1 if v < α(x); and if
v = α(x) then have a = −1 if x < 0 and a = −1 if x > 0. Consider the function

k(x, v) =







−1 if v > α(x) or v = α(x), x < 0

1 if v < α(x) or v = α(x), x > 0
0 if x = 0, v = 0

The task of controlling the rocket cart in a way that makes it stop at the origin in the

shortest possible time results in the state of the cart, consisting of the position x and the
velocity v = ẋ, solving the differential equation ẋ = k(x, v). Note that the right-hand side

of this differential equation is given by a discontinuous function.

5.1 Linear feedback control problems

Problem 5.1 and the discussion surrounding it considered a rocket cart the engines of which
can cause acceleration of −1, 0, or 1 and the the goal of stopping the cart at the origin in

the shortest possible time. The resulting strategy is a discontinuous function of the carts
current position and velocity. Now, let us insist on finding a continuous function of the
carts current position and velocity that achieves the goal of stopping the cart at the origin

but not necessarily in the shortest possible time. In fact, lets weaken the goal further: we
wish to have the carts position and velocity to converge to 0, but strengthen the condition

about the strategy: we want it to be a linear function of the current position and velocity.
Of course, this is impossible with the “old” rocket engines; so lets suppose that an upgraded

engines are available, which can cause the cart to have any acceleration, positive or negative,
large or small. We arrive at the following problem:

Example 5.2 Find a function k(x, v) = ax + bv such that setting u = k(x, v) in the
differential equation ẍ = u results in a differential equation the solutions of which (and the

derivatives of which) converge to 0. When written in the standard form, the differential
equation turns to

˙(

x1

x2

)

=

(

x2

u

)

=

(

0 1
0 0

)(

x1

x2

)

+

(

0
1

)

(ax1 + bx2) =

(

0 1
a b

)(

x1

x2

)

From Section 4.1, it follows that a linear differential equation ẋ = Ax has all of its solutions

converging to 0 in these cases:
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(i) A has two real eigenvalues λ1, λ2, not necessarily distinct, and both are negative;

(ii) A has complex eigenvalues α± iβ and α < 0.

The eigenvalues of the matrix

(

0 1

a b

)

solve the quadratic equation λ2 − bλ− a = 0. Case

(i) occurs if b2 + 4a ≥ 0 and both b−
√

b2+4a
2 and b+

√
b2+4a
2 are negative, which occurs when

b+
√
b2 + 4a is negative. Now, b+

√
b2 + 4a < 0 if b2 +4a ≥ 0 and a < 0. Case (ii) occurs if

b2 + 4a < 0, which implies that a < 0, and b
2 < 0. The second inequality comes from seeing

that when b2+4a < 0, the complex solutions to the quadratic equation are
b± i

√

|b2 + 4a|
2

.

Thus, all solutions to the differential equation ẋ = Ax converge to 0 if a < 0 and b < 0.
4

6 Introduction to nonlinear differential equations and non-

linear systems

Several properties of linear systems were collected in Section 4.5. For autonomous and
homogeneous linear systems ẋ = Ax solutions are unique, have at most exponential growth,

and depend continuously on initial conditions. Several of these properties can fail for even
simple nonlinear differential equations but, as it is proven later, still do hold for many

nonlinear differential equations. Of course, there is little hope for a linear combination of
solutions to a nonlinear differential equation to be a solution to that differential equation,
just as one should not expect a linear combination of two solutions to a quadratic algebraic

equation to be a solution to it.
The example below illustrates that an initial value problem with a nonlinear differential

equation can have many, in fact infinitely many, solutions.

Example 6.1 Consider the differential equation

ẋ = 2
√
x

to be solved with nonnegative solutions. One solution can be guessed x(t) = 0 for all t ≥ 0.

Separating the variables, under the condition that x 6= 0, yields x(t) = (t + c)2. For the
initial condition x(0) = 0, one obtains a solution x(t) = t2 and this is different than the

previously obtained x(t) ≡ 0. One can obtain other solutions with x(0) = 0 by combining
the two solutions found so far. Note that, for any T ≥ 0, the function

x(t) =

{

0 if t ≤ T

(t− T )2 if t > T

is a solution to ẋ = 2
√
x. Consequently, the initial value problem ẋ = 2

√
x, x(0) = 0 has

infinitely many solutions. 4

Exercise 6.2 Consider the initial value problem ẋ =
3

2
x

1
3 , x(0) = 0.

(a) Find a solution x(t) on [0,∞) such that x(4) = 8.

(b) Find a solution x(t) on [0,∞) such that x(11) = 8.
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(c) Find two different solutions x1(t) and x2(t) on [0,∞) such that x1(t) = x2(t) for all

t ∈ [0, 52].

(d) Is there a solution x(t) such that x(3) = 8. Prove your answer.

Example 1.3 illustrated the case there solutions to a differential equation ẋ = x2 blow-

up in finite time. That is, solutions to this differential equation with x(0) > 0 satisfy
limt→ 1

x(0)
‖x(t)‖ = ∞. The example below asks the reader to find a differential equation

with a faster blow-up time.

Problem 6.3 Find a function f(x) such that the solution to the initial value problem ẋ =
f(x), x(0) = 1 satisfies limt→0.1 ‖x(t)‖ = ∞.

Another feature of nonlinear differential equations is that they can have many isolated

equilibria, that is, points where the dynamics are 0. In contrast, a linear system ẋ = Ax
has an isolated equilibrium at 0 if A is an invertible matrix, or a subspace consisting of

equilibria if A is not invertible.

Example 6.4 Consider the differential equation

ẋ = −x2(x− 1)(x− 2)(x− 3)3

which has equilibria at 0, 1, 2, and 3. Inspecting the sign of f(x) = −x2(x−1)(x−2)(x−3)3

lets one determine the behavior of solutions to the differential equation. For example,
because f(x) > 0 for x < 0, solutions with initial points x(0) < 0 increase and converge

to 0. Because f(x) > 0 for 0 < x < 1, solutions with initial points 0 < x(0) < 1 increase
and converge to 1. Furthermore, the equilibrium point 1 is locally asymptotically stable

because f(x) < 0 for 1 < x < 2 and solutions with 1 < x(0) < 2 decrease and converge to
1. Similar analysis can be done about the equilibria 2 and 3.

Note that the behavior of solutions with initial points 0 < x(0) < 2 can be verified
through a use of V (x) = (x− 1)2 which measures the distance squared of x from 1. If x(t)
is a solution to the differential equation, then

d

dt
V (x) =

d

dt
(x−1)2 = 2(x−1)ẋ = −2(x−1)x2(x−1)(x−2)(x−3)3 = −2x2(x−1)2(x−2)(x−3)3.

One can now check that the function on the right end of the equation, 2x2(x−1)2(x−2)(x−
3)3, is negative on (0, 2) with the exception of the point x = 1, where it is 0. Consequently,
any solution in the interval (0, 1) or (1, 2) decreases its distance from 1 as time goes by. 4

A big reason to study linear systems carefully is that they can be used to approximate
nonlinear systems. This is done in detail for systems in 2 dimensions in the next section. The
idea is illustrated below for a one-dimensional equation from the example above. Consider

the equilibrium x = 1. Then f(1) = 0, f ′(1) = −8 and tangent line approximation says
that for x near x, f(x) ≈ f(x) + f ′(x)(x− x), and in this case f(x) ≈ −8(x− 1). If x(t) is

a solution to the differential equation with x(t) near x then considering y(t) = x(t) − x, in
this case y(t) = x(t)−1, gives a differential equation for y: ẏ ≈ f ′(x)y, in this case ẏ ≈ −8y.

It can be expected that behavior of y resembles the behavior of solutions to ẏ = −8y. For
this differential equation, y = 0 is an asymptotically stable equilibrium, and this suggests

that for ẋ = −x2(x − 1)(x − 2)(x − 3)3, the equilibrium x = 1 is asymptotically stable.
Similar linear approximation can be done at x = 2, to discover that x = 2 is an unstable

equilibrium. At x = 0 and x = 3, f ′(x) = 0 and no useful information is obtained.
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6.1 Nonlinear systems in 2 dimensions

This section suggests how one can try to sketch the behavior of solutions to nonlinear dif-

ferential equations in two dimensions. This is desired, as frequently, solving such equations
is hard or just impossible. Throughout the section, f : R

2 → R
2 is a function given as

f(x1, x2) =

(

f1(x1, x2)

f2(x1, x2)

)

.

First, one may want to at least roughly determine the directions in which the solutions

flow. This can be done by first determining the nullclines, that is, curves in the plane along
which ẋ1 = 0, so curves given by f1(x1, x2) = 0, or curves along which ẋ2 = 0, so curves

given by f2(x1, x2) = 0. Then, one determines the regions in the plane where the solutions
move up and right (ẋ1 > 0, ẋ2 > 0), up and left (ẋ1 < 0, ẋ2 > 0), down and right (ẋ1 < 0,

ẋ2 > 0), or down and left (ẋ1 < 0, ẋ2 < 0).

Example 6.5 Consider the differential equation

f(x1, x2) =

(

x2 − x2
1

−6x1 + x2 + x3
1

)

.

Then ẋ1 = x2 − x2
1 and so ẋ1 = 0 if x2 = x2

1, ẋ1 > 0 if x2 > x2
1, and ẋ1 < 0 if x2 < x2

1.

Furthermore, ẋ2 = −6x1+x2+x3
1 and so ẋ2 = 0 if x2 = −x3

1+6x1, ẋ2 > 0 if x2 > −x3
1+6x1,

and ẋ2 < 0 if x2 < −x3
1 + 6x1. Consequently, for example, in the region where x1 > 0 and

x2
1 < x2 < −x3

1 + 6x1, one has ẋ1 > 0, ẋ2 < 0, and so the solutions move down and right.

4

The points at which the nullclines intersect, that is, points where ẋ1 = 0 and ẋ2 = 0, are

equilibria. More precisely, an equilibrium of ẋ = f(x) is a point x such that f(x) = 0. Each
equilibrium point x gives rise to a constant solution x(t) = x for all t ∈ [0,∞) to ẋ = f(x).

Equilibria can be categorized into isolated equilibria and non-isolated equilibria. Isolated
equilibria are equilibria x such that a sufficiently small neighborhood of x does not contain

any other equilibria. Non-isolated equilibria are equilibria which are not isolated, and so,
any neighborhood of a non-isolated equilibrium x contains an equilibrium different from x.

Example 6.6 Consider

f(x1, x2) =

(

(x1 − x2)(1 − x2
1 − x2

2)

(x1 + x2)(1 − x2
1 − x2

2)

)

.

Equilibria occur at any x with 1 − x2
1 − x2

2 = 0, and so, at every point x of the unit circle.
Each such x is a non-isolated equilibrium. Another nullcline where ẋ1 = 0 is the line
x1 −x2 = 0 and another nullcline where ẋ2 = 0 is the line x1 +x2 = 0. These two nullclines

intersect at (0, 0), which is an isolated equilibrium. 4

Further information about the behavior of solutions to the differential equation near iso-

lated equilibria can be obtained through linearization. Let the functions f1 and f2 defining
f be continuously differentiable. Near a point (x1, x2), the function f can be approximated

by

f(x1, x2) ≈







f1(x1, x2) +
∂f1
∂x1

(x1, x2)(x1 − x1) +
∂f1
∂x2

(x1, x2)(x2 − x2)

f2(x1, x2) +
∂f2
∂x1

(x1, x2)(x1 − x1) +
∂f2
∂x2

(x1, x2)(x2 − x2)







20



Consider now the differential equation ẋ = f(x) and suppose that x = (x1, x2) is an

equilibrium, that is, f(x) = 0. If x(t) = (x1(t), x2(t)) is a solution to this differential
equation then the function

y(t) =

(

x1(t) − x1

x2(t) − x2

)

satisfies ẋ = ẏ and, if x(t) is near x, it also satisfies

ẏ(t) ≈







∂f1
∂x1

(x1, x2)y1 +
∂f1
∂x2

(x1, x2)y2

∂f2
∂x1

(x1, x2)y1 +
∂f2
∂x2

(x1, x2)y2






=







∂f1
∂x1

(x1, x2) +
∂f1
∂x2

(x1, x2)

∂f2
∂x1

(x1, x2) +
∂f2
∂x2

(x1, x2)







(

y1
y2

)

= ∇f(x)y(t)

where ∇f(x) is the Jacobian of f at x,

∇f(x) =







∂f1
∂x1

(x1, x2) +
∂f1
∂x2

(x1, x2)

∂f2
∂x1

(x1, x2) +
∂f2
∂x2

(x1, x2)







(

y1
y2

)

Thus, one can expect the behavior of y(t) when y(t) is small to resemble the behavior of
solutions to the linear system

Consequently, one can expect the behavior of solutions x(t) to ẋ = f(x) when x(t) is
near an equilibrium x to resemble the behavior of solutions y(t) to ẏ = ∇f(x)y. This lets

one classify the equilibria x of
ẋ = f(x) (22)

based on the properties of

ẏ = ∇f(x)y, (23)

and so, based on the eigenvalues of ∇f(x) at the equilibria. Let x be such an equilibrium,
i.e., let f(x) = 0.

• x is a stable node for (22) if the origin is a stable node for (23), i.e., if ∇f(x) has two

distinct real negative eigenvalues;

• x is an unstable node for (22) if the origin is an unstable node for (23), i.e., if ∇f(x)
has two distinct real positive eigenvalues;

• x is a saddle point for (22) if the origin is a saddle point for (23), i.e., if ∇f(x) has

two real eigenvalues with opposite signs;

• x is a stable focus for (22) if the origin is a stable focus for (23), i.e., if ∇f(x) has
complex eigenvalues α± iβ with α < 0;

• x is an unstable focus for (22) if the origin is an unstable focus for (23), i.e., if ∇f(x)

has complex eigenvalues α± iβ with α > 0.

Example 6.7 Consider the differential equation from Example 6.5. To find equilibria, set

f(x) = 0, get x2 − x2
1 = 0, −6x1 + x2 + x3

1 = 0; first equation gives x2 = x2
1, using this in

the second equation gives −6x1 + x2
1 + x3

1 = x1(x1 − 2)(x1 + 3) = 0. Hence the equilibria

are (0, 0), (2, 4), and (−3, 9). The Jacobian is

∇f(x) =

(

−2x1 1
−6 + 3x2

1 1

)

.
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At the equilibrium x = (0, 0), the Jacobian is ∇f(x) =

(

0 1

−6 1

)

, the characteristic poly-

nomial is −λ(1 − λ) + 6 = λ2 − λ + 6, and the eigenvalues are 1
2 ± i

√
23
2 . Consequently,

this equilibrium is an unstable focus. At x = (2, 4), ∇f(x) =

(

−4 1
6 1

)

, the characteristic

polynomial is λ2 + 3λ− 6, the eigenvalues are 1
2

(

−3 ±
√

33
)

, and so this equilibrium is a
saddle point. Similarly, x = (−3, 9) turns out to be a saddle point. 4

Exercise 6.8 Consider

f(x1, x2) =

(

x2 − x3
1

x2
2 − x1

)

.

Find nullclines, equilibria, classify the equilibria, and sketch the behavior of solutions as

well as you can.

Example 6.9 Consider the differential equation from Example 6.6. The only isolated
equilibrium occurs at x = (0, 0). The linearization at x = (0, 0) can be found quickly by

just ignoring all terms in f that are not linear — this does not work at equilibria which are
not (0, 0). One has

f(x1, x2) =

(

x1 − x3
1 − x1x

2
2 − x2 + x2

1x2 − x3
2

x1 − x3
1 − x1x

2
2 + x2 − x2

1x2 − x3
2

)

and so the linearized differential equation is

(

ẋ1

ẋ2

)

=

(

x1 − x2

x1 + x2

)

.

Of course, one can calculate the Jacobian directly and obtain ∇f(x) =

(

1 −1

1 1

)

. Eigen-

values are λ = 1 ± i, and so x is an unstable focus. 4

Further information about the behavior of solutions can be sometimes obtained by
considering polar coordinates. If x(t) = (x1(t), x2(t)) is a solution to ẋ = f(x) and

r(t) =
√

x1(t)2 + x2(t)2 and θ = arctan
x2(t)

x1(t)
, then ṙ < 0 indicates solutions moving to-

wards the origin, ṙ > 0 indicates solutions moving away from the origin, while θ̇ < 0
indicates clockwise rotation, θ̇ > 0 indicates counterclockwise rotation. Trying to get infor-

mation through polar coordinates is natural when some circular motion is expected or even
when a circle plays a special role for f .

Example 6.10 Consider the differential equation from Example 6.6. Every point on the

unit circle is an equilibrium. Consider then solutions in polar coordinates. One obtains

d

dt

(

r2
)

=
d

dt

(

x2
1 + x2

2

)

= 2x1ẋ1 + 2x2ẋ2 = 2x1(x1 − x2)(1− r2) + 2x2(x1 + x2)(1− r2)

= 2r2(1− r2)

and because
d

dt

(

r2
)

= 2rṙ, one gets ṙ = r(1 − r)(1 + r). Hence ṙ > 0 if 0 < r < 1 and

ṙ < 0 if r > 1. It is already known, from Example 6.6, that every point with r = 1 is an
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equilibrium, so not surprisingly ṙ = 0 if r = 1. The same comment applies to the unique

point with r = 0. Similarly one can calculate

θ̇ =
d

dt

(

arctan
x2

x1

)

=
1

1 +
x2
2

x2
1

ẋ2x1 − x2ẋ1

x2
1

= 1 − r2.

Consequently, inside the unit circle solutions move counterclockwise and outside the unit

circle the solutions move clockwise. 4

7 Existence, uniqueness of solutions, etc.

7.1 Existence and uniqueness of solutions — Lipschitz f case

Given a continuous function f : R
n → R

n and x0 ∈ R
n, suppose that a function x : [0, T ] →

R
n satisfies the following integral equation

x(t) = x0 +

∫ t

0
f(x(s)) ds. (24)

Then, the function x is a solution to the initial value problem

ẋ = f(x), x(0) = x0. (25)

Indeed, x(0) = x0 +
∫ 0
0 f(x(s)) ds = x0, and the fundamental theorem of calculus suggests

that

ẋ(t) =
d

dt

(

x0 +

∫ t

0
f(x(s)) ds

)

=
d

dt

∫ t

0
f(x(s)) ds = f(x(t)).

On the other hand, any differentiable function x : [0, T ] → Rn is an integral of its derivative:

x(t) − x(0) =

∫ t

0

ẋ(s) ds,

and so if x is a solution to the initial value problem (25), which ensures that x(0) = x0 and
ẋ(s) = f(x(s)), then x satisfies the integral equation (24).

Note that given any function x : [0, T ] → Rn, the integral formula (24) leads to a new

function, say x′(t), defined by x′(t) = x0 +
∫ t

0 f(x(s)). As noted above, if it turns out that
x′(t) = x(t) for all t ∈ [0, T ], then x is a solution to (25). Examples below illustrate what

happens if one applies this integral formula repeatedly to functions that are not solutions
to (25).

Example 7.1 Consider the initial value problem

ẋ = cx, x(0) = x0

in R and the following iterative procedure: let x1(t) = x0 for all t ∈ [0,∞) and, for
n = 1, 2, . . . , given xn : [0,∞) → R define xn+1 : [0,∞) → R by

xn+1(t) = x0 +

∫ t

0
cxn(s) ds.
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Then

x1(t) = x0 +

∫ t

0

cx0 ds = x0(1 + ct), x2(t) = x0 +

∫ t

0

cx0(1 + cs) ds = x0

(

1 + ct+
c2t2

2

)

and, in general,

xn(t) = x0

(

1 + ct+
(ct)2

2
+ · · ·+ (ct)n

n!

)

.

Note that as n→ ∞, xn(t) → x0e
ct and x0e

ct happens to be the solution to the initial value
problem. 4
Example 7.2 Consider the initial value problem

ẋ =

(

0 1
−1 0

)

x, x(0) =

(

1
0

)

in R
2 and the following iterative procedure: let x1(t) =

(

1
0

)

for all t ∈ [0,∞) and, for

n = 1, 2, . . . , given xn : [0,∞) → R define xn+1 : [0,∞) → R by

xn+1(t) =

(

1

0

)

+

∫ t

0

(

0 1

−1 0

)

xn(s) ds.

Then

x1(t) =

(

1

0

)

+

∫ t

0

(

0 1

−1 0

)(

1

0

)

ds =

(

1

0

)

+

∫ t

0

(

0

−1

)

ds =

(

1

−t

)

x2(t) =

(

1

0

)

+

∫ t

0

(

0 1

−1 0

)(

1

−s

)

ds =

(

1

0

)

+

∫ t

0

(

−s
−1

)

ds =

(

1− t2/2

−t

)

x3(t) =

(

1

0

)

+

∫ t

0

(

0 1

−1 0

)(

1 − s2/2

−s

)

ds =

(

1

0

)

+

∫ t

0

(

−s
−1 + s2/2

)

ds =

(

1− t2/2

−t+ t3/6

)

In the limit, one obtains
(

1 − t2/2 + t4/4!− t6/6! + . . .

−t+ t3/3!− t5/5! + . . .

)

=

(

cos t

sin t

)

4
Exercise 7.3 Repeat the iterative procedure of Example 7.1 starting with x1(t) = x0 + t.

Exercise 7.4 Repeat the iterative procedure of Example 7.1 for the initial value problem

ẋ = x2, x(0) = 1.

Pick your own x1(t).

In the examples and exercises above — examples and exercises which involve differential

equations that one can solve by hand — the iterative procedure

xn+1(t) = x0 +

∫ t

0
f(xn(s)) ds (26)

yields a sequence of functions which converge to a solution of the initial value problem

(25). This suggests that maybe the iterative procedure can be used to show the existence of
solutions to a general initial value problem. Roughly, if the iterations produce a sequence of

functions which converge (in an appropriate sense) and the limit (in an appropriate sense)
of this sequence satisfies (24) then the limit is a solution to (25). To make this precise and

the proof (somewhat) rigorous, some background material is needed.
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7.1.1 Lipschitz continuity and contractions

A function f : R
n → R

n is Lipschitz continuous if there exists a constant L > 0 such that

for every x, y ∈ R
n,

‖f(x)− f(y)‖ ≤ L‖x− y‖. (27)

Any constant L for which (27) holds is a Lipschitz constant for f . The basic example of a

Lipschitz function is a linear function f(x) = Ax for some matrix A ∈ R
n×n. Because for

every matrix A there exists a constant L > 0 such that ‖Av‖ ≤ L‖v‖ for all v ∈ R
n, for

every x, y ∈ R
n,

‖f(x)− f(y)‖ = ‖Ax−Ay‖ = ‖A(x− y)‖ ≤ L‖x− y‖.

Another basic example comes from functions f : R → R with bounded derivative. Suppose
that, for some L > 0, |f ′(x)| ≤ L for all x ∈ R. Mean Value Theorem says that for all
x, y ∈ R, x 6= y, there exists z in between x and y such that

f(x)− f(y)

x− y
= f ′(z).

Then
|f(x)− f(y)| = |f ′(z)(x− y)| = |f ′(z)||x− y| ≤ L|x− y|.

Similarly, a continuously differentiable f : R
n → R

n is Lipschitz continuous with constant
L if the Jacobian matrix ∇f is bounded in the sense that, for every x, v ∈ R

n, ‖∇f(x)v‖ ≤
L‖v‖.

Example 7.5 The function f : R → R given by f(x) =
x

1 + x2
is Lipschitz continuous.

Indeed, it is differentiable with f ′(x) =
1− x2

(1 + x2)2
and the function |f ′(x)| = |1 − x2|

(1 + x2)2
is

continuous and approaches 0 when |x| → ∞, hence, |f ′(x)| is bounded. In fact, because

|1 − x2| ≤ |1| + | − x2| = 1 + x2, |f ′(x)| ≤ 1

1 + x2
≤ 1, so f is Lipschitz continuous with

constant 1.
4

Exercise 7.6 Show that the following functions f : R → R are Lipschitz continuous:

f(x) = |x|, f(x) = arctanx.

Exercise 7.7 Show that if f, g : R
n → R

n are Lipschitz continuous then f + g is Lipschitz
continuous. Find an example where f and g are Lipschitz continuous with constant L > 0

and f + g is Lipschitz continuous with a constant smaller than L.

A function f : R
n → R

n which is Lipschitz continuous with constant L < 1 is called a
contraction. The name illustrates the fact that the distance between f(x) and f(y) is less

than the distance between x and y.

Theorem 7.8 Let f : R
n → R

n be a contraction. Then

(a) There exists exactly one fixed point for f , that is, a point x such that f(x) = x.

(b) For every initial point x0 ∈ Rn, the sequence of points xn defined by xn+1 = f(xn) is

convergent and such that limn→∞ xn = x.
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Proof. Let L ∈ (0, 1) be a Lipschitz constant for f . Suppose that there are two fixed points

for f , x 6= y. Then
‖x− y‖ = ‖f(x) − f(y)‖ ≤ L‖x− y‖,

where the equality holds because x, y are fixed points and the inequality comes from the
definition of a contraction. Because ‖x−y‖ 6= 0, one obtains 1 ≤ L which contradicts L < 1.

Consequently, there is at most one fixed point for f . Showing that it exists entails proving
(b). Take any x0 ∈ R

n and consider the sequence as defined in (b). Then, for n = 1, 2, . . . ,

‖xn+1 − xn‖ = ‖f(xn) − f(xn−1‖ ≤ L‖xn − xn−1‖ ≤ Ln‖x1 − x0‖,

where the last inequality comes from repeating the argument n times. Furthermore, for any

m > n,

‖xm − xn‖ = ‖xm − xm−1 + xm−1 − xm−2 + · · ·+ xn+1 − xn‖
≤ ‖xm − xm−1‖ + ‖xm−1 − xm−2‖ + · · ·+ ‖xn+1 − xn‖
≤ Lm−1‖x1 − x0‖ + Lm−2‖x1 − x0‖ + · · ·+ Ln‖x1 − x0‖
=

(

Lm−1 + Lm−2 + · · ·+ Ln
)

‖x1 − x0‖
= Ln

(

Lm−n−1 + Lm−n−2 + · · ·+ 1
)

‖x1 − x0‖
≤ Ln 1

1 − L
‖x1 − x0‖

Consequently, xn is a Cauchy sequence, meaning that for every ε > 0 there exists N > 0

such that for all m > n > N , ‖xm − xn‖ < ε. In a complete space, and R
n is a complete

space, Cauchy sequences have limits. Thus the limit of xn exists, let’s call it x. Then

x = lim
n→∞

xn = lim
n→∞

f(xn−1) = f
(

lim
n→∞

xn−1

)

= f(x)

and so x is a fixed point for f . The proof is finished.

7.1.2 Contractions on spaces of functions

This section discusses Lipschitz functions and contractions not on Rn but rather on the

space of continuous functions on an interval. To avoid confusion, the term mapping (rather
than function) will be used for the association, to each continuous function f on an interval,

of another continuous function Gf on that interval.

Example 7.9 For every function x : [0, 1] → R let Gx : [0, 1] → R be the function defined
by

Gx(t) = x(1− t).

So, if x(t) = 7 for all t ∈ [0, 1] then Gx(t) = t for all t ∈ [0, 1]; if x(t) = t2 − 1 then

Gf(t) = (1− t)2 − 1 = t2 − 2t; etc. Note that if f is continuous then so is Gf , and that for
every function f , G2f = G(Gf) = f . 4

A mapping G assigning to each continuous function x : [0, T ] → R
n another continuous

function Gx : [0, T ] → Rn is Lipschitz continuous with Lipschitz constant L > 0 if, for every

pair of continuous functions x1, x2 : [0, T ] → R
n,

max
t∈[0,T ]

‖Gx1(t) −Gx2(t)‖ ≤ L max
t∈[0,T ]

‖x1(t) − x2(t)‖

and it is a contraction if it is Lipschitz continuous with constant L < 1.

26



Example 7.10 The mapping G from Example (7.9) is Lipschitz continuous with constant

1. In fact, because for every continuous function x : [0, 1] → R,

max
t∈[0,T ]

|x(t)| = L max
t∈[0,T ]

|x(1 − t)|,

one has
max

t∈[0,T ]
‖Gx1(t) −Gx2(t)‖ = max

t∈[0,T ]
‖x1(t) − x2(t)‖.

4

Theorem 7.11 Let the function f : R
n → R

n be Lipschitz continuous with constant L > 0
and let x0 ∈ R

n. Define a mapping G from the space of continuous functions x : [0, T ] → R
n

to the space of continuous functions x : [0, T ] → R by

Gx(t) = x0 +

∫ t

0
f(x(s)) ds.

Then G is Lipschitz continuous with constant LT . If LT < 1, then G is a contraction.

Proof. Consider any two continuous functions x1, x2 : [0, T ] → Rn. Then

‖Gx1(t) −Gx2(t)‖ =

∥

∥

∥

∥

x0 +

∫ t

0
f(x1(s)) ds− x0 −

∫ t

0
f(x2(s)) ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

0
f(x1(s)) − f(x2(s)) ds

∥

∥

∥

∥

≤
∫ t

0
‖f(x1(s))− f(x2(s))‖ ds ≤

∫ t

0
L‖x1(s)− x2(s)‖ ds

≤
∫ t

0

L max
s∈[0,T ]

‖x1(s) − x2(s)‖ ds = max
s∈[0,T ]

‖x1(s) − x2(s)‖
∫ T

0

Lds

= LT max
t∈[0,T ]

‖x1(t) − x2(t)‖

and consequently

max
t∈[0,T ]

‖Gx1(t) −Gx2(t)‖ ≤ LT max
t∈[0,T ]

‖x1(t) − x2(t)‖.

Exercise 7.12 Verify directly that the sequence of functions xn(t) from Example 7.1, when
considered on an interval [0, T ], satisfies the inequality

max
t∈[0,T ]

‖xn+1(t) − xn(t)‖ ≤ cT max
t∈[0,T ]

‖xn(t) − xn+1(t)‖

for every n = 1, 2, . . . .

Problem 7.13 The mapping G from the space of real-valued continuous function on [0, 2]

to the space of real-valued continuous functions on [0, 2] is given by

Gx(t) = 3x(t)−
∫ t

0
sin(x(s)) ds.

Show that G is Lipschitz continuous and find its Lipschitz constant.
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Problem 7.14 Verify that the mapping G on the space of continuous functions from [0, T ]

to R, defined by

Gx(t) =

∫ t

0

√

x(s) ds

is not Lipschitz continuous, no matter how small T > 0 is.

7.1.3 Proof of existence and uniqueness

Fact 7.15 If G is a contraction on the space of continuous functions x : [0, T ] → R
n then

there exists exactly one fixed point for G, that is, a function x : [0, T ] → R
n such that

Gx(t) = x(t) for every t ∈ [0, T ].

Theorem 7.16 Let f : R
n → R

n be a Lipschitz continuous function. Then, for every
x0 ∈ R

n there exists a solution x : [0,∞) → R
n to the initial value problem (25) and this

solution is unique on every interval [0, T ].

Proof. Let L > 0 be a Lipschitz constant for f and let T > 0 be such that LT < 1. Consider
the mapping G defined in Theorem 7.11. According to that theorem, G is a contraction on

the space of continuous functions x : [0, T ] → R
n. Fact 7.15 implies that G has a unique

fixed point, let’s denote it by x1. The discussion at the beginning of Section 7.1 implies

that x1 : [0, T ] → R
n is then the unique solution to (25) on [0, T ]. To obtain the solution x

on [0,∞), proceed recursively. Given xn : [0, T ] → Rn, repeated the argument above for the

initial value problem ẋ = f(x), x(0) = xn(T ) to obtain a unique solution xn+1 : [0, T ] → R
n.

Then, the desired solution on [0,∞) is obtained by considering x(t) = xn(t− (n− 1)T ) for

t ∈ [(n− 1)T, nT ].

The uniqueness claimed in Theorem 7.16 can be dealt with in another way. Suppose
that, for some τ > 0, there are two solutions x1, x2 : [0, τ ] → Rn to the initial value problem

(25). Consider the differentiable function v(t) = ‖x1(t) − x2(t)‖2 and note that v(0) = 0
and

d

dt
v(t) = 2(x1(t) − x2(t)) · (ẋ1(t) − ẋ2(t)) ≤ 2‖x1(t) − x2(t)‖‖ẋ1(t) − ẋ2(t)‖

= 2‖x1(t) − x2(t)‖‖f(x1(t)) − f(x2(t))‖ ≤ 2‖x1(t) − x2(t)‖L‖x1(t) − x2(t)‖
≤ 2Lv(t)

Consequently, v(t) ≤ v(0)e2Lt = 0 and so ‖x1(t) − x2(t)‖ = 0.

7.2 Related results and more general cases

The argument carried out after Theorem 7.16 in order to show another way of verifying
uniqueness of solutions to the initial value problem (25) generalizes to the following: if f

is Lipschitz continuous with constant L, then, for every two solutions x′, x′′ on [0,∞) to
ẋ = f(x), for every t > 0,

‖x′(t) − x′′(t)‖ ≤ eLt‖x′(0)− x′′(0)‖.

As a consequence, one obtains a result about continuous dependence of solutions to ẋ = f(x)
on initial conditions.
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Theorem 7.17 Let f : R
n → R

n be a Lipschitz continuous function. Then, for every

T > 0 and ε > 0 there exists δ > 0 such that any two solutions x′, x′′ : [0, T ] → R
n to the

differential equation ẋ = f(x) such that

‖x′(0)− x′′(0)‖ < δ

are such that

max
t∈[0,T ]

‖x′(t)− x′′(t)‖ < ε.

In fact, one can take δ = εe−LT , where L is a Lipschitz constant for f .

Note that this result does imply uniqueness of solutions to initial value problems ẋ =
f(x), x(0) = x0 for every x0: if, for x′, x′′ as in the result, x′(0) = x0 = x′′(0) then

x′(t) = x′′(t) for all t ∈ [0, T ].
The result about continuous dependence of solutions on initial conditions, and the con-

sequence about uniqueness, easily generalizes to the case where the right-hand side of the
differential equation depends on t, but is Lipschitz continuous in x uniformly in t. More

precisely, if f : R
n+1 → R

n is such that there exists L > 0 such that for every t ∈ R, every
x, y ∈ R

n,
‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,

then any two solutions x′, x′′ on [0, T ] to ẋ = f(x), for every t ∈ [0, T ], ‖x′(t) − x′′(t)‖ ≤
eLt‖x′(0) − x′′(0)‖. The proof is essentially identical to that of Theorem 7.17. The reader

should verify this.
Theorem 7.16, for a Lipschitz continuous f , ensured the existence and uniqueness of

solutions to ẋ = f(x) on [0,∞). In absence of Lipschitz continuity, for example when
f(x) = x2, as discussed in Example 1.3, solutions can experience finite-time blow-up, and

thus fail to exist on [0,∞). If f happens to be locally Lipschitz continuous, and f(x) = x2

is such a function, then solutions are unique in an appropriate sense to be specified below.
When f is continuous but not Lipschitz continuous, for example if f(x) =

√

|x|, existence

can still be ensured, but uniqueness may fail as illustrated in Example 6.1. To be able to
state a precise result, a definition is needed. Consider a differential equation

ẋ = f(x). (28)

A solution x : I → R
n to (28), where I is an interval beginning at 0, is called maximal if

there does not exist another solution y : J → Rn, where J is an interval beginning at 0,

such that I ⊂ J, x(t) = y(t) for every t ∈ I , and I 6= J. In other words, a solution is
maximal if it cannot be extended forward in time.

Theorem 7.18 Let f : Rn → Rn be a continuous function. Then, for every initial point

x0 ∈ R
n, there exists a maximal solution x to the initial value problem

ẋ = f(x), x(0) = x0,

and either x is defined on [0,∞) or x is defined on [0, T ) for some T > 0 and limt→T− ‖x(t)‖ =
∞. If f is locally Lipschitz continuous, then for every initial point x0 ∈ Rn, the maximal

solution to the initial value problem is unique.
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This result will not be proven here. It is an ambitious exercise to tackle the proof the

theorem above for the case of f locally Lipschitz continuous, following what was done for the
Lipschitz continuous case in and before Theorem 7.16. The significant difference between

the Lipschitz and locally Lipschitz cases is that the functions x1, x2, x3, etc. featured in
the proof of Theorem Theorem 7.16 had domains of equal length, so concatenating them

results in the interval [0,∞), while in the locally Lipschitz case, the lengths of domains of
xn can decrease as n→ ∞, and a concatenation may result in an interval of the form [0, T ).
For the case of a continuous, but not locally Lipschitz continuous f , the approach relying

on contractions is not appropriate and different proofs are needed.
Continuous dependence of solutions on initial conditions cannot be expected for a contin-

uous f when the uniqueness of maximal solutions fails. It can be expected when uniqueness
is ensured, for example, when f is locally Lipschitz continuous.

Theorem 7.19 Let f : R
n → R

n be a continuous function. Suppose that, for an initial

point x0 ∈ R
n, there exists a unique maximal solution x : I → R

n to ẋ = f(x), x(0) = x0.
Then, for every T > 0 such that [0, T ] ⊂ I, every ε > 0, there exists δ > 0 such that for
every initial point x′0 such that

‖x′0 − x0‖ < δ,

every maximal solution y to ẋ = f(x), x(0) = x′0 is defined on [0, T ] and

max
t∈[0,T ]

‖y(t)− x(t)‖ < ε.

Problem 7.20 Verify directly the assumptions and the conclusions of Theorem 7.19 for

solutions to the differential equation

ẋ =

(

ẋ1

ẋ2

)

=

(

x2

√

|x1|
0

)

,

for the initial points x0 = (0, 0) and x′0 = (0, ε) with ε > 0.

It was noted already that Theorem 7.16 extends to the case of f depending on t. Simi-
larly, conclusions of Theorem 7.18 hold for the differential equation ẋ = f(t, x) if, for every

x, the function f(t, x) is piecewise continuous in t and, for every t, the function f(t, x) is
continuous or locally Lipschitz continuous in x.

8 Asymptotic stability

Throughout this chapter, a general nonlinear differential equation

ẋ = f(x) (29)

is considered, under the assumption that f : R
n → R

n is continuous. The property of
interest is the asymptotic stability of an equilibrium for (29). This property requires that

solutions that start near the equilibrium remain near this equilibrium and, furthermore,
that they converge to this equilibrium as t → ∞. Such a property is frequently present in
physical systems, for example due to dissipation of energy. It is also a property frequently

desired in a control system
ẋ = f(x, u) (30)

and possibly can be achieved by appropriate selection of feedback control u = k(x).
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8.1 Asymptotic stability

The origin, for the differential equation (29), is

• Lyapunov stable if for every ε > 0 there exists δ > 0 such that every maximal2 solution
x with |x(0)| < δ is defined on [0,∞) and such that |x(t)| < ε for all t ∈ [0,∞);

• locally attractive if there exists δ > 0 such that every maximal solution with |x(0)| < δ

is defined on [0,∞) and such that limt→∞ x(t) = 0;

• locally asymptotically stable if it is both Lyapunov stable and locally attractive.

If the origin is locally asymptotically stable then the basin of attraction of the origin is the

set of all initial conditions x0 ∈ R
n such that every maximal solution with x(0) = x0 is

defined on [0,∞) and such that limt→∞ x(t) = 0. If the basin of attraction of the locally

asymptotically stable origin is equal to R
n, the origin is globally asymptotically stable.

For example, the origin is globally asymptotically stable for ẋ = ax if and only if a < 0.

Indeed, every solution has the form x(t) = x(0)eat and so if a < 0 then |x(t)| ≤ |x(0)|
which verifies Lyapunov stability (one can take δ = ε) and furthermore limt→∞ x(t) = 0,
no matter what x(0) is, which verifies global asymptotic stability. If a = 0, the origin is

Lyapunov stable. If a > 0, the origin is not Lyapunov stable and not locally attractive: for
arbitrarily small δ > 0, the solution with x(0) = δ is x(t) = δeat and limt→∞ x(t) = ∞.

For the differential equation ẋ = x(x − 1)(x + 2), the origin is locally asymptotically
stable with the basin of attraction (−2, 1). This can be justified without explicitly finding

the solutions. The rough reason for local asymptotic stability is that the function f(x) =
x(x − 1)(x + 2) is positive for x ∈ (−2, 0), so solutions x(t) when in (−2, 0) increase, and

f(x) is negative for x ∈ (0, 1), so solutions x(t) when in (0, 1) decrease.

8.2 Asymptotic stability for linear systems

This section discusses asymptotic stability of the origin for the linear system

ẋ = Ax (31)

where A ∈ Rn×n is a matrix. Because linear systems can be solved explicitly, asymptotic

stability can be verified directly. For example, consider

A =

(

−1 2
−3 4

)

.

In Example 4.4 it was shown that the general form of a solution is

x(t) = c1e
t

(

1
1

)

+ c2e
2t

(

2
3

)

.

Unless c1 = c2 = 0, each such solution satisfies ‖x(t)‖ → ∞ when t→ ∞ and so the origin

is not Lyapunov stable and not locally attractive. On the other hand, consider

A =

(

1 −2
3 −4

)

,

2Maximal solutions are defined above Theorem 7.18.
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which has solutions of the form

x(t) = c1e
−t

(

1
1

)

+ c2e
−2t

(

2
3

)

.

Clearly, each such solution x(t) converges to 0 when t → ∞. To verify Lyapunov stability,

consider the following calculation (which relies on the fact that a2 +2|a||b|+b2 ≤ 2(a+b)2):

‖x(t)‖ =

√

(c1e−t + 2c2e−2t)2 + (c1e−t + 3c2e−2t)2

=
√

(

c21e
−2t + 2c1c2e−3t + 4c22e

−4t
)

+
(

c21e
−2t + 2c1c2e−3t + 9c22e

−4t
)

≤
√

(

c21e
−2t + 2|c1||c2|e−3t + 4c22e

−4t
)

+
(

c21e
−2t + 2|c1||c2|e−3t + 9c22e

−4t
)

≤
√

(

c21 + 2|c1||c2| + 4c22
)

e−2t +
(

c21 + 2|c1||c2| + 9c22
)

e−2t

≤ e−t
√

2(c1 + 2c2)2 + (c1 + 3c2)2

= e−t
√

2‖x(0)‖.

In particular, ‖x(t)‖ ≤
√

2‖x(0)‖. This shows that the origin is Lyapunov stable: for ε > 0,

in the definition of Lyapunov stability, one can take δ = ε/
√

2. The computation above
suggests that, despite knowing the solutions explicitly, verifying Lyapunov stability may

not be very simple. The situation gets more complicated for

A =

(

−17 9
−25 13

)

.

In Example 4.5 it was shown that the solutions have the form

x(t) = x(0)e−2t +

(

3
5

)

(−5x1(0) + 3x2(0))te−2t.

Clearly, such x(t) converges to 0 when t → ∞. Hence, the origin is globally attractive.

Verifying Lyapunov stability — which does hold — directly takes some more effort; the
reader should try. Later in this section, and also in Section 8.4, methods to verify asymptotic
stability of linear systems without solving them first are discussed. Below, the methods come

down to checking the eigenvalues of the matrix A.
Because for linear systems local asymptotic stability is equivalent to global asymptotic

stability, as the reader is asked to verify, the adjectives are dropped below and asymptotic
stability of (31) is discussed. The key to the exercise below is homogeneity: if x : [0,∞) →
R

n is a solution to (31) then so is the function ax(t)0, for any constant scalar a.

Exercise 8.1 Show that if the origin is locally asymptotically stable for (31) then the origin

is globally asymptotically stable for (31).

Let M ∈ Rn×n be a nonsingular matrix such that A = MJM−1 for a matrix J in real

Jordan form (recall Fact 4.3 and the discussion of real Jordan forms for 2 × 2 matrices in
Section 4.1). The change of variables z = M−1x, equivalently, x = Mz leads to another

linear system
ż = Jz (32)

with a function x : [0,∞) → Rn solving (31) if and only if the related z : [0,∞) → Rn given

by z(t) = M−1x(t) solves (32).
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Lemma 8.2 The origin is asymptotically stable for (31) if and only if the origin is asymp-

totically stable for (38).

Proof. Suppose that the origin is asymptotically stable for (38), so it is Lyapunov stable

and attractive. To verify Lyapunov stability of the origin for (31), pick ε > 0. Let k1 > 0
be such that ‖Mv‖ ≤ k1‖v‖ for every v ∈ R

n. Let ε′ = ε/k1 and using Lyapunov stability

of the origin for (32) find δ′ > 0 such that every solution to (32) with ‖z(0)‖ < δ′ is such
that ‖z(t)‖ < ε′ for all t ≥ 0. Now let k2 > 0 be such that ‖M−1v‖ ≤ k2‖v‖ for every

v ∈ R
n and let δ = δ′/k2. Then, every solution to (31) with ‖x(0)‖ < δ is such that the

solution z = M−1x to (32) satisfies ‖z(0)‖ = ‖M−1x(0)‖ ≤ k2‖x(0)‖ < k2δ = δ′. Then, by

the choice of δ′, ‖z(t)‖ < ε′ for all t ≥ 0. Hence ‖x(t)‖ = ‖Mz(t)‖ ≤ k1‖z(t)‖ < k1ε
′ = ε

for all t ≥ 0. This verifies Lyapunov stability of the origin for (31). To verify attractivity

of the origin for (31), note that for every x0 ∈ R
n, the solution z : [0,∞) → R

2 to (32) with
z(0) = M−1x0 converges to 0 as t → ∞, and hence the solution x : [0,∞) → R

2, which
must by given by x(t) = Mz(t), converges to 0 as t → ∞. This verifies attractivity of the

origin for (31).

For a linear system ẋ = Ax in R
2, the analysis carried out in Section 4.1 suggests that

the origin is globally asymptotically stable if A has two real negative eigenvalues or if A has
complex eigenvalues α ± iβ with α < 0. To rigorously justify this, consider first the case

of A having two real negative eigenvalues λ1 ≤ λ2 < 0, possibly equal to one another, and

suppose that J =

(

λ1 0

0 λ2

)

. Then, for any solution z : [0,∞) → R
2 to (32),

‖z(t)‖ =

∥

∥

∥

∥

(

z1(0)eλ1t

z2(0)eλ2t

)∥

∥

∥

∥

=
√

z2
1(0)e2λ1t + z2

2(0)e2λ2t ≤ eλ2t
√

z2
1(0) + z2

2(0) = eλ2t‖z(0)‖

and because λ2 < 0, the origin is asymptotically stable for (32).

In the case of of A having a repeated real negative eigenvalue λ < 0 and when J =
(

λ 1

0 λ

)

, one has, for any solution z : [0,∞) → R
2 to (32),

‖z(t)‖ =

∥

∥

∥

∥

(

(z1(0) + tz2(0))eλt

z2(0)eλt

)∥

∥

∥

∥

= eλt
√

z2
1(0) + 2tz1(0)z2(0) + t2z2

2(0) + z2
2(0)

≤ eλt
√

(1 + t2)z2
1(0) + 2(1 + t2)|z1(0)||z2(0)|+ (1 + t2)z2

2(0)

= eλt
√

1 + t2
√

z2
1(0) + 2|z1(0)||z2(0)|+ z2

2(0) ≤ eλt
√

1 + t2
√

2z2
1(0) + 2z2

2(0)

= eλt
√

2(1 + t2)‖z(0)‖

Consequently, ‖z(t)‖ ≤M‖z(0)‖ where M is the maximum of eλt
√

2(1 + t2) over t ∈ [0,∞),

which verifies Lyapunov stability (take δ = ε/M) and ‖z(t)‖ → 0 when t → ∞, which
verifies attractivity. The missing steps in this argument are a nice calculus exercise.

Exercise 8.3 Let λ < 0. Find the maximum of φ(t) = eλt
√

2(1 + t2) over t ∈ [0,∞) and
verify that limt→∞ φ(t) = 0. Also, show that for any a, b ∈ R, a2 + 2|a||b|+ b2 ≤ 2a2 + 2b2.

For the case of A having complex eigenvalues α ± iβ, and so when J =

(

α −β
β α

)

, the

polar coordinates argument carried out in Section 4.1 shows that ‖z(t)‖ = eαt‖z(0)‖. When

α < 0, this ensures that the origin is asymptotically stable for (32).
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On the other hand, if A has a real eigenvalue λ ≥ 0, then the solution x(t) = eλtv, where

v is any eigenvector associated with λ, shows that the origin is not attractive. Similarly, the
equality ‖z(t)‖ = eαt‖z(0)‖ in the case of A having complex eigenvalues α ± iβ shows that

α ≥ 0 contradicts attractivity. This, combined with the arguments in the above paragraphs
and with Lemma 8.2, implies the following result.

Theorem 8.4 The linear 2×2 system (31) has the origin asymptotically stable if and only

if the eigenvalues of A are real and negative or complex with a negative real part.

This result is valid for n × n matrices.

Some of the discussion in this section underlined how directly checking for Lyapunov
stability of the origin for the linear system (31) may be somewhat technical. It turns out
that attractivity, which is simple to verify if one knows the general form of a solution to

(31), is sufficient to guarantee Lyapunov stability. This is a special feature of linear systems
and fails in the nonlinear case.

Theorem 8.5 If the origin is attractive for the linear n× n system (31) then the origin is
asymptotically stable for (31).

8.3 Lyapunov functions

Consider a general nonlinear differential equation

ẋ = f(x) (33)

with f : R
n → R

n continuous.
A continuously differentiable function V : D → R is called a Lyapunov function for (33)

if

• V (0) = 0, V (x) > 0 if x 6= 0, and lim‖x‖→∞ V (x) = ∞;

• for every x 6= 0,

∇V (x) · f(x) < 0. (34)

A function satisfying the first condition above and satisfying ∇V (x) · f(x) < 0 only for
x 6= 0 on a neighbourhood of 0 is called a local Lyapunov function.

For example, if c < 0 then V (x) = x2 is a Lyapunov function for ẋ = cx on R, because
x2 ≥ 0, x2 = 0 only if x = 0, x2 → ∞ if x → ±∞, and ∇V (x) = 2x and so ∇V (x) · f(x)

turns to 2xcx = 2cx2, and this is negative unless x = 0. For the differential equation
ẋ = f(x) = x(x−1)(x+2), V (x) = x2 is a local Lyapunov function because ∇V (x) ·f(x) =

2xx(x− 1)(x+ 2) = 2x2(x− 1)(x+ 2) < 0 for x 6= 0 in (−2, 1).
The implication of the Lyapunov inequality (34) is that, for every solution x : [0, T ] →

R
n, the function V (x(t)) is decreasing (as a function of time). In other words, the Lyapunov

function for (33) is decreasing along nonzero solutions to (33). Indeed, the chain rule yields

d

dt
V (x(t)) = ∇V (x(t)) · ẋ(t) = ∇V (x(t)) · f(x(t)),

and this is negative unless x(t) = 0.
There are two very important facts about Lyapunov functions:
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• Checking if a function V is a Lyapunov function for (33) does not require solving (33).

• The existence of a Lyapunov function for (33) ensures asymptotic stability of the
origin for (33).

The first fact above is important because solving (33) may be hard or impossible. On
the other hand, checking if a given function is a Lyapunov function is frequently simpler.

This is illustrated below, in Example 8.6. Of course, there is a related difficulty: finding a
Lyapunov function may be hard. The second fact, which is formally stated and proved as

is Theorem 8.9, is important because checking for asymptotic stability directly, even if (33)
can be solved, need not be easy.

Example 8.6 Consider the differential equation ẋ = f(x) with f : R
2 → R

2 given by

f(x) =

(

−x1 + x1x2

−2x2 − 4x2
1

)

.

Consider the function

V (x) =
1

2

(

x2
1 + x2

2

)

.

Then

∇V (x) · f(x) = x1(−x1 + x1x2) + x2(−2x2 − 4x2
1) = −x2

1 − 2x2
2 − 3x2

1x2.

This quantity is not negative for all x 6= 0. For example, consider x2 = −1. Then, the
quantity is 2x2

1 − 2, which is positive when |x1| > 1. Hence, this V is not a Lyapunov

function for ẋ = f(x). However, it is a local Lyapunov function: note that if x2 > −1/3
then

∇V (x) · f(x) = −x2
1 − 2x2

2 − 3x2
1x2 < −x2

1 − 2x2
2 − x2

1 = −2x2
2 ≤ 0,

and so for all x 6= 0 with x2 > −1/3, ∇V (x) · f(x) < 0.
Now, consider another function,

V (x) = 2x2
1 +

1

2
x2

2.

Then

∇V (x) · f(x) = 4x1(−x1 + x1x2) + x2(−2x2 − 4x2
1) = −4x2

1 − 2x2
2.

Consequently, ∇V (x) · f(x) < 0 for all x 6= 0. Hence V is a Lyapunov function for (33).

Theorem 8.9 will show that this implies that the origin is globally asymptotically stable. 4

Some preliminary material is required before Theorem 8.9.

S≤rV = {x ∈ R
n | V (x) ≤ r}

Lemma 8.7 Let V be a Lyapunov function for (33). Then:

(a) For every ε > 0 there exists r > 0 such that x ∈ S≤r implies |x| < ε.

(b) For every r > 0 the set S≤r is closed and bounded.

Exercise 8.8 Prove Lemma 8.7.
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Theorem 8.9 If there exists a Lyapunov function for (33) then the origin is globally asymp-

totically stable for (33). If there exists a local Lyapunov function for (33) then the origin
is locally asymptotically stable for (33).

Proof. Suppose that V is a Lyapunov function for (33). Lyapunov stability of the origin

is shown first. Pick ε > 0. Then, by Lemma 8.7 (a) there exists r > 0 such that x ∈ S≤r

implies |x| < ε. Because V is continuous and V (0) = 0, there exists δ > 0 such that

|x| < δ implies V (x) ≤ r. Consequently, because V (x(t)) is decreasing for every solution
x : [0, T ] → R

n of (33), every such solution with |x(0)| < δ satisfies V (x(t)) ≤ r for all

t ∈ [0, T ], and hence |x(t)| < ε for all t ∈ [0, T ]. Thus, every maximal solution to (33) with
|x(0)| < δ is bounded by ε, i.e., |x(t)| < ε, and thanks to Theorem 7.18 it must be defined

on [0,∞). This completes the proof of Lyapunov stability.
To prove that every maximal solution to (33) is defined on [0,∞) and converges to 0

as t → ∞, let x be a maximal solution to (33). Then V (x(t)) ≤ V (x(0)) for all t in the
domain of the solution, and so x(t) ∈ S≤r with r = V (x(0)). By Lemma 8.7 (b), the set
S≤r is bounded, so the maximal solution x is bounded, so by Theorem 7.18 it is defined on

[0,∞). From boundedness, let R > 0 be such that |x(t)| ≤ R for all r ≥ 0.
To see that limt→∞ x(t) = 0, suppose that, to the contrary, there exists some ε > 0 and

a sequence of times t1, t2, . . . with limi→∞ ti = ∞ such that |x(ti)| ≥ ε for i = 1, 2, . . . . Let
δ > 0 be related to this ε > 0 as required by Lyapunov stability of the origin. If there was

a time τ such that |x(τ)| < δ, then for all t ≥ τ , |x(t)| < ε, which is impossible because
|x(ti)| ≥ ε for i = 1, 2, . . . and ti → ∞. Hence, the maximal solution x : [0,∞) → R

n

satisfies δ ≤ |x(t)| ≤ R for all t ≥ 0. The function ∇V (x) · f(x) is continuous and negative
on the closed and bounded set S = {x | δ ≤ x ≤ R} and hence there exists v > 0 such that

∇V (x) · f(x) ≤ −v for all x ∈ S. Then

d

dt
V (x(t)) = ∇V (x(t)) · f(x(t)) ≤ −v

and consequently

V (x(t)) = V (x(0)) +

∫ t

0

dV

dt
(x(s)) ds < V (x(0))− vt.

This implies that limt→∞ V (x(t)) = −∞, which is impossible because the function V is
nonnegative. Hence, the assumption that limt→∞ x(t) = 0 fails was wrong. It must be that
limt→∞ x(t) = 0 and the proof is finished.

Example 8.10 A closer look at the Lyapunov function V (x) = 2x2
1+

1
2x

2
2 for the differential

equation

f(x) =

(

−x1 + x1x2

−2x2 − 4x2
1

)

from Example 8.6 helps illustrate some elements of the proof of Theorem 8.9. First, the

reader should verify that the linearization of f at x = 0 yields a linear system ẋ1 =
−x1, ẋ2 = −2x2. Hence it should be expected that the origin is locally asymptotically

stable for ẋ = f(x). Theorem 8.9 confirms this, in fact implies that the origin is globally
asymptotically stable. Indeed, Example 8.6 verified that V is a Lyapunov function.

To see better how V helps deal with Lyapunov stability, note that sublevel sets of V ,

that is, sets S≤r, are ellipses. For example, the set of points x with V (x) ≤ 2 is the ellipse
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x2
1 +

x2
2

4
≤ 1. Note that this ellipse contains the circle, centered at the origin, of radius 1

and is itself contained in the circle, centered at the origin, of radius 2. Because V (x(t))
is decreasing along every solution to ẋ = f(x), a solution that satisfies V (x(0)) < 1 will

satisfy V (x(t)) < 2 for all t ≥ 0. Consequently, if a solution satisfies |x(0)| < 1 then it
also satisfies |x(t)| < 2 for all t ≥ 0. The reader should verify that, similarly, if a solution
satisfies |x(0)| < ε/2 then it also satisfies |x(t)| < ε for all t ≥ 0, and this verifies Lyapunov

stability of the origin, with δ = ε/2. 4

8.4 Lyapunov functions for linear systems

Section 8.2 showed that asymptotic stability of a linear system

ẋ = Ax (35)

can be verified directly, even if with some technicalities, because (35) can be solved explicitly.
More importantly, the section showed that checking asymptotic stability of a linear system

comes down to checking the sign of the eigenvalues, or of the real part of the eigenvalues.
Section 8.3 showed that Lyapunov functions can be used to confirm asymptotic stability of

a general nolinear differential equation ẋ = f(x). This section discusses Lyapunov functions
for linear systems. The most important conclusion is that if the origin is asymptotically

stable for (35) then there exists a quadratic Lyapunov function confirming this.
First, some examples. The matrix

A =

(

−1 2

0 −3

)

has eigenvalues −1 and −3, and so, by Theorem 8.4, the origin is asymptotically stable for
(35). The simplest possible guess, V (x) = ‖x‖2 = x2

1 + x2
2, is a Lyapunov function for (35),

which verifies asymptotic stabilty. There are other quadratic Lyapunov functions in this
case: if V (x) = x2

1 + cx2
2 then

∇V (x) · Ax = 2x1(−x1 + 2x2) + 2cx2(−3x2) = −2(x1 − x2)
2 − 2(3c− 1)x2

2

and so V is a Lyapunov function if c > 1/3.

Exercise 8.11 Find a Lyapunov function for (35) if A =

(

−1 10

0 −1

)

.

As it was verified directly in Section 8.2, the linear system (35) has the origin asymp-
totically stable when

A =

(

1 −2
3 −4

)

.

Finding a Lypaunov function to confirm this is not straightforward. Trying V (x) = ‖x‖2

gives ∇V (x) ·Ax = 2x2
1 + 2x1x2 − 8x2

2 and this quantity is positive for many choices of x1,

x2. One can try V (x) = ax2
1 + cx2

2, with the constants a > 0 and c > 0 to be determined,
and then

∇V (x) ·Ax = ax2
1 + 2(−2a+ 3c)x1x2 − 8cx2

2.

It is impossible to make this quantity negative for all x with the constraint that a > 0.

Indeed, considering x = (x1, 0) gives ∇V (x) · Ax = ax2
1 > 0 for all x1 6= 0. Note that
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searching for a Lyapunov function of the form ax2
1 + cx2

2 is no more general than looking at

x2
1 + cx2

2. Indeed, the former function is a scalar multiple of the latter.
A general form of a quadratic function of x ∈ R

n is

V (x) = ax2
1 + 2bx1x2 + cx2

2 (36)

for constants a, b, c ∈ R. The 2 is inserted for convenience; after all, 2b is a constant.
When could such a function be a candidate for a Lyapunov function? One has V (0) = 0;

one needs V (x) > 0 if x 6= 0. Of course, it must be that a > 0 and b > 0. Further
conditions on the constants come from a simple calculus problem. Fix x1 and consider

φ(x2) = ax2
1 + 2bx1x2 + cx2

2. The minimum of φ is
(

a− b2

c

)

x2
1. For this to be positive if

x1 6= 0, it must be that a− b2

c > 0. Consequently, the function V in the form (36) satisfies
V (x) > 0 for x 6= 0 if and only if a > 0, c > 0, and ac − b2 > 0. In fact, one can drop the

superfluous condition c > 0 (as otherwise, thanks to a > 0, one would get ac− b2 ≤ 0).
A different way to express (36), which will be useful in some linear algebra arguments

below, is

V (x) = x · Px where P =

(

a b
b c

)

. (37)

The matrix P is symmetric: PT = P and positive definite: for every vector v 6= 0, v ·Pv > 0.
The paragraph above justified an alternative characterization of a positive definite matrix:
a symmetric matrix P , as in (37), is positive definite if an only if a > 0 and ac − b2 > 0,

i.e., if a > 0 and the determinant of P is positive. Note that for V in the form (??),
∇V (x) = Px, and so if V is a Lyapunov function for (35) then

∇V (x) · Ax = (Px) · Ax = x · PTAx = x · PAx < 0

for all x 6= 0.
The existence of quadratic (in the form (36) or, equivalently, (37)) Lypaunov functions

for a 2×2 linear system for which the origin is asymptotically stable can be verified through
considering the real Jordan form of A. Given A, let M be a nonsingular matrix such that

A = MJM−1 for a matrix J in real Jordan form. The change of variables z = M−1x,
equivalently, x = Mz leads to another linear system

ż = Jz (38)

with a function x : [0,∞) → R
n solving (35) if and only if the related z : [0,∞) → R

n given
by z(t) = M−1x(t) solves (38). Lemma 8.2 showed that asymptotic stability for (38) is

equivalent to asymptotic stability for (35). Suppose now that W is a quadratic Lyapunov
function for (38) given by

W (z) = z ·Qz (39)

for a symmetric and positive definite 2×2 matrix W . Then z ·QJz < 0 for z 6= 0. However,

z ·QJz =
(

M−1x
)

·QJ
(

M−1x
)

= x ·M−TQJM−1x = x ·M−TQM−1MJM−1x

= x ·M−TQM−1Ax,

and if this quantity is negative for all x 6= 0 (equivalently, for all z = M−1x 6= 0), then the
function V (x) = x · Px with

P = M−TQM−1
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is a Lyapunov function for (35). The reader should verify that if Q is symmetric then so is

P and if Q is positive definite then so it P . In summary, if W (z) = z · Qz is a Lyapunov
function for (38) then V (x) = x · Px with P = M−TQM−1 is a Lyapunov function for

(35). In other words, if the function W (z) = z · Qz is a Lyapunov function for (38) then
V (x) = W (M−1x) is a Lyapunov function for (35).

It now remains to see if, at least in the 2× 2 case, for every asymptotically stable linear
system ż = Jz where the matrix J is in real Jordan form, there exists a quadratic Lyapunov
function. Consider first

J =

(

λ1 0

0 λ2

)

where λ1 ≤ λ2 < 0. Then W (z) = ‖z‖2 is a Lyapunov function for ż = Jz (the reader
should check!), and ‖z‖2 is quadratic, given by (39) withQ being the identity matrix. When

J =

(

α −β
β α

)

,

it was verified in Section 4.1, by passing to polar coordinates, that W (z) = ‖z‖2 is a
Lyapunov function for ż = Jz. Finally, if

J =

(

λ 1

0 λ

)

with λ < 0, the function W (z) = z2
1 + cz2

2 is a Lyapunov function for ż = Jz as long
as c > 1/4λ2. The reader should verify this. In summary, for the 2 × 2 case, whenever
the origin is asymptotically stable for ẋ = Ax, there exists a quadratic Lyapunov function

W (z) = z · Qz for ż = Jz, where J is the real Jordan form of A. Then, as the previous
paragraph showed, V (x) = x · Px is a quadratic Lyapunov function for ẋ = Ax, where

P = M−TQM−1. This, combined with Theorem 8.9, amounts to the following result.

Theorem 8.12 The linear 2 × 2 system (35) has the origin asymptotically stable if and

only if there exists a quadratic Lyapunov function V (x) = x · Px for (35).

This result, just as Theorem 8.4, is valid for n×n matrices. The usefulness of this result
is in the ability to assert the existence of a Lyapunov function for a linear system (35),

without the need to find it explicitly, based only on the analysis of the eigenvalues of the
matrix A.

Example 8.13 Consider the linear system (35) with

A =

(

−17 9

−25 13

)

.

As it was discussed in Section 8.2, based on the general form of solutions to this system —
which was found in Example 4.5 — one can easily conclude that all solutions converge to

0 as t → ∞. Then, Theorem 8.5 implies that the origin is asymptotically stable for (35).
Alternatively, one can check eigenvalues of A and use Theorem 8.4 to conclude asymptotic

stability. Theorem 8.12 then implies that there exists a quadratic Lyapunov function V (x) =
x · Px for (35).
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To find a quadratic Lyapunov function explicitly, consider the real Jordan form of A:

A = MJM−1 where

M =

(

3 1
5 2

)

, J =

(

−2 1
0 −2

)

, M−1 =

(

2 −1
−5 3

)

.

Then W (z) = 1
2‖z‖2 is a Lyapunov function for ż = Jz and so V (x) = W (M−1x) is a

Lyapunov function for ẋ = Az. More explicitly,

V (x) =
1

2
‖M−1‖2 =

1

2

∥

∥

∥

∥

(

2x1 − x2

−5x1 + 3x2

)∥

∥

∥

∥

2

=
1

2
(2x1 − x2)

2 +
1

2
(−5x1 + 3x2)

2

= 14.5x2
1 − 17x1x2 + 5x2

2.

In the linear algebra form, W (z) = 1
2z ·Qz with Q = I , the identity matrix. Then V (x) =

1
2x · Px where P = M−TQM−1 = M−TM−1, and so

P = M−TM−1 =

(

2 −5
−1 3

)(

2 −1
−5 3

)

=

(

29 −17
−17 10

)

.

Then, indeed, V (x) =
1

2
x ·

(

29 −17

−17 10

)

x = 14.5x2
1 − 17x1x2 + 5x2

2. 4

Problem 8.14 Let φ : R
2 → R be a continuous function such that φ(x) > 0 for all x ∈ R

2.
Let f : R2 → R2 be given by

f(x) =

(

φ(x)(x2 − 2x1)

φ(x)(4x1 − 5x2)

)

= φ(x)

(

−2 1

4 −5

)

x.

Show that the origin is asymptotically stable for ẋ = f(x).

The section concludes with a discussion of the rate of decrease of a quadratic Lyapunov
function V (x) = 1

2x · Px for an asymptotically stable linear system (35). It will be now

shown that the right-hand side of the Lyapunov inequality ∇V (x)·Ax < 0 is in fact bounded
by a negative multiple of V (x) itself. As usual, the details are worked out in the 2× 2 case,

but the conclusion is true in general. Suppose that the Lyapunov inequality

∇V (x) · Ax < 0

holds for all x 6= 0. Equivalently, x · PAx < 0, and because

(x · PAx)T = (xTPAx)T = xTATPT (xT )T = xTATPx = x · ATPx,

the Lyapunov inequality is equivalent to

x · PAx =
1

2

(

x · PAx + x · ATPx
)

x =
1

2
x ·

(

PA +ATP
)

x < 0. (40)

The reason for considering PA+ATP , rather than PA, is that PA+ ATP is a symmetric
matrix. One can now ask whether, for some r > 0, the Lyapunov inequality implies

∇V (x) · Ax < −rV (x). (41)
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The stronger Lyapunov inequality (41) is equivalent to 1
2x ·

(

PA + ATP
)

x < −rx ·Px, and

the also to

x ·
(

1

2
PA +

1

2
ATP + rP

)

x < 0

This holds, for all x 6= 0, if the matrix −
(

1
2PA + 1

2A
TP + rP

)

is positive definite. To see

if r > 0 making this possible exists, let

P =

(

a b

b c

)

,
1

2

(

PA +ATP
)

=

(

α β

β γ

)

.

The matrix P is positive definite, so a > 0, ac − b2 > 0. Because (40) holds for all
x 6= 0, −(PA + ATP ) is positive definite, and so −α > 0, αγ − β2 > 0. The matrix

−
(

1
2PA + 1

2A
TP + rP

)

, equal to

(

−α − ra −β − rb

−β − rb −γ − rc

)

,

is positive definite if −α − ra > 0, which holds for all small r > 0 because −α > 0, and if

(−α − ra)(−γ − rc) − (−β − rb)2 = αγ − β2 + r(aγ + αc− 2βb)− r2(ac− b2) > 0.

Because αγ − β2 > 0, this holds for small enough r. Note also that because ac − b2 > 0,
this fails for large r. In summary, there exists r > 0 such that (41) holds for all x 6= 0.

Theorem 8.15 The linear 2 × 2 system (35) has the origin asymptotically stable if and

only if there exists a function V (x) = x · Px with symmetric and positive definite matrix P
and r > 0 such that (41) holds for all x 6= 0.

8.5 Linearization and asymptotic stability

In Section 6.1, linear approximation of a nonlinear differential equation

ẋ = f(x) (42)

near an equilibrium was used to deduce behavior of solutions to (42) near equilibria. This

section rigorously justifies some of the conclusions made in Section 6.1. It will be proved
that if the origin is asymptotically stable for the linearization of (42) then the origin is

locally asymptotically stable for (42).
Given a continuously differentiable f : Rn → Rn and the differential equation (42),

consider the linear system

ẋ = Ax where A = ∇f(0). (43)

Theorem 8.16 Suppose that the origin is an equilibrium for (42). If the origin is asymp-
totically stable for (43) then the origin is locally asymptotically stable for (42).

Proof. If (43) has the origin asymptotically stable then, by Theorem 8.15, there exists a

symmetric and positive definite matrix P such that the function V (x) = 1
2x · Px satisfies,

for every x 6= 0, the inequality

∇V (x) · Ax < −rV (x).
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Because f(0) = 0 and by the definition of differentiability of f at 0,

f(x) = ∇f(x)x+ o(x) = Ax+ o(x),

where lim
‖x‖→0

‖o(x)‖
‖x‖ = 0. Then

∇V (x) · f(x) = ∇V (x) · (Ax+ o(x)) < −rV (x) + (Px) · o(x) ≤ −rV (x) + ‖Px‖‖o(x)‖
≤ −1

2
x · Px + k‖x‖‖o(x)‖

where k is such that ‖Px‖ ≤ k‖x‖ for all x ∈ R
n. Then

∇V (x) · f(x) ≤ ‖x‖2

(

−1

2

x

‖x‖ · P x

‖x‖ + k
‖o(x)‖
‖x‖

)

≤ ‖x‖2

(

−m + k
‖o(x)‖
‖x‖

)

,

where m = min‖y‖=1 V (y) is positive because V is continuous and positive for y 6= 0. There

exists δ > 0 such that, for all x 6= 0 with ‖x‖ < δ,
‖o(x)‖
‖x‖ <

m

2k
. Then, for all such x,

∇V (x) · f(x) < −m
2
‖x‖2 < 0.

Consequently, V is a local Lyapunov function for (42) and Theorem 8.9 concludes that the

origin is locally asymptotically stable for (42).

Example 8.17 Consider the differential equation (42) in R
2 given by

f(x) =

(

−x1(1 + 4x2
2)

x2(2x
2
1 − 3 − ex1)

)

.

Then

∇f(x) =

(

−1 + 4x2
2 −8x1x2

x2(4x1 − ex1) 2x2
1 − 3 − ex1

)

, ∇f(0) =

(

−1 0
0 −4

)

,

the eigenvalues of ∇f(0) are −1 and −4 and hence, by Theorem 8.4, the origin is asymp-
totically stable for linearization (43). Theorem 8.16 now implies that the origin is locally

asymptotically stable for the original nonlinear differential equation (42). Since local asymp-
totic stability entails Lyapunov stability, to verify if the origin is globally asymptotically

stable for (42) one only needs to check if the origin is globally attractive. A rough argument
suggesting that this is, in fact, true is as follows: ẋ1 = −x1(1 + 4x2

2), and since 1 + 4x2
2 ≥ 1

for all x2, x1 should converge to 0 no slower than solutions to ẋ1 = −x1 do. This is valid
independently of initial condition x1(0). Then, since for large t, x1(t) is small, the coefficient
2x2

1 − 3 − ex1 in ẋ2 = x2(2x
2
1 − 3 − ex1) is eventually negative, in fact less than −3. This

ensures convergence of x2 to 0. One could now conclude convergence to 0 of all solutions
to (42), and so global attractivity of the origin, except for one gap in the argument: what

happens to x2 for small t, before the discussed coefficient is less than −3. For example,
could it experience finite-time blow up? To this end, one should note that x2

1 is decreasing,

due to ẋ1 = −x1(1 + 4x2
2), and then ẋ2 = x2(2x

2
1 − 3 − ex1) ensures that x2 does not grow

faster than exponentially. Hence, finite-time blow up is impossible and the conclusion about

convergence to 0 is correct.
Since the argument just presented, about convergence to 0 of all solutions to (42), may

appear not convincing, one can try to check global asymptotic stability for (42) with a
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Lyapunov function. Here, linearization is helpful too. The function V (x) = 1
2‖x‖2 is a

Lyapunov function for (43) and it does not hurt to check if it is a Lyapunov function for
(42). Note that the proof of Theorem 8.16 suggests that this V is a local Lyapunov function

for (42), so it remains to check if it is a global one. One obtains

∇V (x) · f(x) = x1

(

−x1(1 + 4x2
2)

)

+ x2

(

x2(2x
2
1 − 3− ex1)

)

= −x2
1 − 2x2

1x
2
2 − 3x2

2 − e−x1x2
2

≤ −x2
1 − 3x2

2

and consequently V is a Lyapunov function for (42). Hence the origin is globally asymp-

totically stable for (42). 4

The reverse implication in Theorem 8.16, that local asymptotic stability of the origin
for (42) implies asymptotic stability for linearization (43), is false. To see this, it is enough
to consider ẋ = −x3 in R. This nonlinear differential equation has 0 asymptotically stable.

The linearization is ẋ = 0, and 0 is not attractive for this linear differential equation.

8.6 Perturbations and asymptotic stability

This section briefly discusses how perturbations of a differential equation influence asymp-
totic stability. Consider first a linear differential equation

ẋ = Ax (44)

for which the origin is asymptotically stable. Then, for a matrix ∆A with sufficiently small
entries, the linear differential equation

ẋ = (A+ ∆A)x

also has the origin asymptotically stable. One way to justify this is by considering eigen-
values. Eigenvalues depend continuously on the entries of the matrix. Consequently, if

entries of ∆A are small, then eigenvalues of A + ∆A are close to eigenvalues of A. Now,
asymptotic stability for (44) implies, by Theorem 8.4, that eigenvalues of A have negative

real parts. Then, for small enough ∆, eigenvalues of A+ ∆A have negative real parts, and
consequently, the origin is asymptotically stable for ẋ = (A+∆A)x. Another way to justify

this, using the methods developed in this chapter, is to rely on Lyapunov functions and
their strict decrease, as in Theorem 8.15.

Problem 8.18 For a 2 × 2 matrix A, show that a Lyapunov function V (x) = x · Px for
(44), as described in Theorem 8.15, is a Lyapunov function for ẋ = (A + ∆A)x if entries

of ∆A are sufficiently small.

Small linear perturbations can destroy asymptotic stability for nonlinear differential
equations. For example, ẋ = −x3 has the origin globally asymptotically stable but for an

arbitrarily small ε > 0, this property fails for the differential equation ẋ = −x3+εx. Indeed,
for x ∈ (0,

√
ε), one has ẋ > 0 while for x ∈ (−√

ε, 0), one has ẋ < 0.
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