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Invariance Principles for Hybrid Systems With
Connections to Detectability and Asymptotic Stability

Ricardo G. Sanfelice, Rafal Goebel, and Andrew R. Teel

Abstract—This paper shows several versions of the (LaSalle’s)
invariance principle for general hybrid systems. The broad frame-
work allows for nonuniqueness of solutions, Zeno behaviors, and
does not insist on continuous dependence of solutions on initial con-
ditions. Instead, only a mild structural property involving graph-
ical convergence of solutions is posed. The general invariance re-
sults are then specified to hybrid systems given by set-valued data.
Further results involving invariance as well as observability, de-
tectability, and asymptotic stability are given.

Index Terms—Asymptotic stability, detectability, graphical con-
vergence, hybrid systems, invariance principles.

I. INTRODUCTION

A. Hybrid Systems

HYBRID systems theory has been an active research field
recently. This is due to the technological advances that

require mathematical models allowing for interactions between
discrete and continuous dynamics. Hybrid systems, having
states that can evolve continuously (flow) and/or discretely
(jump), permit modeling and simulation of systems in a wide
range of applications including robotics, aircraft control, pow-
ertrain automotive systems, etc. Further motivation for studying
hybrid systems comes from the recognition of the capabilities
of hybrid feedback in robust stabilization of nonlinear control
systems; see for example Hespanha and Morse [1], Prieur and
Astolfi [2], and Prieur et al. [3], [42].

Several different models and solution concepts for hybrid sys-
tems have appeared. See, for example, the work of Tavernini
[4], Michel and Hu [5], Lygeros et al. [6], Aubin et al. [7], and
van der Schaft and Schumacher [8]. Here, we will work in the
framework outlined in [9] (related to concurrent approach in
[10]), motivated there by the pursuit of robustness of hybrid con-
trol algorithms, and established in [11]. This framework, while
similar to [6] and [7], simplifies the data structure somewhat to
focus on the dynamics and more importantly, brings to the fore
the relationship between properties of the data and the structure
of solution sets of a hybrid system. The (mild) properties of the
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data we will use here were already employed in [12] and [43]
when showing that asymptotic stability of a hybrid system im-
plies the existence of a smooth Lyapunov function and in [3]
and [42], where a systematic approach to robust hybrid feed-
back stabilization of general nonlinear systems was described.
The mild regularity properties of the data—which do allow for
nonuniqueness of solutions, multiple jumps at a time instant,
Zeno behavior, etc.— were further motivated in [13] by ac-
counting for the effects of vanishing noise in a hybrid control
system (even when nominal solutions are “well-behaved”). For
hybrid control systems that satisfy these regularity properties,
results on robustness to a class of singular perturbations, con-
trol smoothing, measurement noise, and sample-and-hold im-
plementation of the hybrid controller were recently reported in
[14] and [15]. Additionally, in [16], we have developed a gen-
eral model for simulation of hybrid systems and, relying on the
robustness properties shown in [11], we have established suffi-
cient conditions for continuity of asymptotically compact sets
of simulated hybrid systems.

B. Invariance Principle Results

LaSalle’s invariance principle, presented originally by
LaSalle [17], [18] in the setting of differential and difference
equations, is one of the most important tools for convergence
analysis in dynamical systems. The original principle states
that bounded solutions converge to the largest invariant subset
of the set where the derivative or the difference, respectively, of
a suitable energy function is zero. Byrnes and Martin [19] gave
a version stating that bounded solutions converge to the largest
invariant subset of the set where an integrable output function
is zero. Ryan [20] extended this integral invariance principle
to differential inclusions and gave applications to adaptive
control. Logemann and Ryan [21] extended the principle for
differential inclusions using the notion of meagre functions,
alongside a generalization of Barbalat’s Lemma. For systems
with discontinuous right-hand side, invariance principles based
on that of LaSalle were given by Shevitz and Paden [22] and
Bacciotti and Ceragioli [23] for Filippov solutions, and by
Bacciotti and Ceragioli [24] for Carathéodory solutions. Re-
garding invariance principles for hybrid systems, in [6] Lygeros
et al. extend LaSalle’s principle to nonblocking (for each
initial condition there exists at least one complete solution),
deterministic (the solution is unique), and continuous (see
[6, Definition III.3]) hybrid systems, while Chellaboina et al.
[25] work with left-continuous and impulsive systems without
multiple jumps at an instant, and with further quasi-continuity
properties including uniqueness of solutions. Hespanha, in
[26], states an invariance principle for switched linear systems
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under a specific family of switching signals. The follow-up
work, [27], extends some of the results of [26] to a family of
nonlinear switched systems under a larger set of switching sig-
nals. In [28], Bacciotti and Mazzi present invariance principles
for nonlinear switched systems with dwell-time signals and
state-dependent switching that, in contrast to [26], allow for
locally Lipschitz Lyapunov functions.

C. Contributions

In this paper, we identify some basic assumptions that seem
necessary to carry out invariance arguments for general hybrid
systems, in which nonuniqueness of solutions, multiple jumps at
the same time, and Zeno behaviors are possible. These assump-
tions do not include continuous dependence on initial solutions,
whether in the standard uniform metric or in any generalized
sense. Instead, we rely on outer semicontinuous, with respect to
graphical convergence of solutions, dependence on initial con-
ditions. Whether a given hybrid system possesses this property
can be easily verified by checking if the data of the system has
some mild regularity. We add that the nonuniqueness of solu-
tions is sometimes necessary in order for outer semicontinuous
dependence of solutions on initial conditions to be present. Such
nonuniqueness has a physical meaning in hybrid control sys-
tems: it comes up naturally when one accounts for small state
measurement error (see [13]) and is fundamental in the robust-
ness analysis of hybrid control. The other aspect of the “set-val-
uedness” of the systems we consider, the set-valued data, serves
as an analytical tool to capture nonuniqueness of solutions and is
also deeply motivated by the questions of robustness, as outlined
in [9]. The usefulness of set-valued data has already been ap-
preciated in the literature of continuous-time systems; see, e.g.,
[29].

As the key to our results is the semicontinuity property of so-
lutions, rather than properties of the data of a hybrid system, we
work with abstract systems, defined as sets of hybrid trajectories
having the needed property. Only later we specify the results
to hybrid systems in the framework of [11] (see also [9] and
[10]). Such generality allows us to study not only hybrid sys-
tems of [11] but also certain subsets of solutions to those, like
when the time between jumps is bounded below by a positive
constant (dwell-time solutions) or when the number of jumps
in a given interval cannot exceed a certain upper bound (av-
erage dwell-time solutions). These are usually considered in the
switching and hybrid control literature; see [26] and [30]. Also,
we can obtain specialized results for the classes of Zeno, or of
uniformly non-Zeno trajectories.

Our goal is to provide sufficient conditions for convergence of
bounded hybrid trajectories. We propose two invariance princi-
ples that resemble the original one by LaSalle. The first principle
involves a (Lyapunov-like) function that is nonincreasing along
all trajectories that remain in a given set. The other relaxes the
assumptions, by considering a pair of auxiliary (output) func-
tions satisfying certain conditions only along the hybrid trajec-
tory in question. These conditions seem to be the weakest previ-
ously used in invariance principles for continuous-time and dis-
crete-time systems. Thus, in going to the hybrid domain, we do
not give up any of the generality. We also invoke observability
and detectability for convergence, and we relate this approach

to the use of the invariance principles. When coupled with sta-
bility, our convergence results give new sufficient conditions for
asymptotic stability. Special cases include hybrid versions of
Lyapunov’s basic theorem and Krasovskii’s extension [31]. (For
an overview of some other stability results for hybrid systems,
see [32] and [33]).

II. HYBRID SYSTEMS

Throughout this paper, we will study abstract hybrid systems
given by a set of hybrid trajectories satisfying certain Standing
Assumption. Such objects subsume a rich class of hybrid sys-
tems defined by generator equations (or inclusions) subject to
some weak regularity conditions, and several subsets of solu-
tions to those. Below,
denotes the Euclidean vector norm, and given a nonempty set

.

A. General Framework

Definition 2.1 (Hybrid Time Domain): A subset
is a compact hybrid time domain if

for some finite sequence . A subset
is a hybrid time domain if

is a compact hybrid time domain.
Equivalently, is a hybrid time domain if is a union of a

finite or infinite sequence of intervals , with the
“last” interval possibly of the form with finite or

. On each hybrid time domain there is a natural ordering of
points: if and .

Definition 2.2 (Hybrid Trajectory): A hybrid trajectory is a
pair consisting of a hybrid time domain dom and
a function defined on dom that is continuous in on dom

for each .
We will often not mention dom explicitly, and understand

that with each hybrid trajectory comes a hybrid time domain
dom . Alternatively one could think of a hybrid trajectory as a
set-valued mapping from (or from ) whose domain is
a hybrid time domain (for a set-valued mapping , the domain
dom is the set of arguments for which the value is nonempty)
and which is single-valued on its domain. We denote the range
of by , i.e., ).

In what follows, we will rely on a concept of graphical
convergence. A sequence of (set-valued) mappings
converges graphically to if the graphs converge
to as sets (for a mapping , the graph

is ). For details on set
convergence, see [34, Chapter 3]. When specialized to hybrid
trajectories, graphical convergence of a sequence to a
hybrid trajectory amounts to the following:

a) for any there exists a sequence
such that

;
b) for any convergent sequence such that

exists, the limit equals where
.
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When does not jump multiple times at a single time instant,
graphical convergence described above means, intuitively, that
the times of th jumps of ’s approach the time of the th jump
of , and on time intervals where does not jump, ’s do not
jump either and converge to pointwise.

In general, a sequence of hybrid trajectories need not con-
verge graphically, and even when it does, the limit may not be
a hybrid trajectory (it can even be set-valued). To carry out in-
variance principles, we will need to exclude such behavior, and
pose some further restrictions, for locally eventually bounded
sequences of hybrid trajectories. We call a sequence of
hybrid trajectories locally eventually bounded with respect to an
open set if for any , there exists and a compact
set such that for all , all with

. We can now define our main object of
study.

Definition 2.3 (Abstract Hybrid System): Given an open set
, an abstract hybrid system on is a set of hybrid

trajectories satisfying the following.
Standing Assumption.

(B1) for all .
(B2) For any and any we have

, where dom
and for all ;
(B3) for any locally eventually bounded (with respect to )
sequence of elements of that converges graphi-
cally, the limit is an element of .

Remark 2.4: Assumption (B1) identifies as the state space
of the system. (B2) says that tails of trajectories in are also
in , and reduces to the standard semi-group property under
further existence and uniqueness conditions. (B3) guarantees
a kind of semicontinuous dependence of trajectories on initial
conditions. More specifically, given a sequence of with

convergent to some point , a general property of set
convergence (see [34, Theorem 4.18] or [11, Section III]) im-
plies that we can pick a subsequence of ’s that converge graph-
ically. Under the eventual local boundedness assumption, (B3)
guarantees that the graphical limit of that subsequence, say , is
an element of . As from the very definition of graphical conver-
gence we also get that , this essentially means that
a limit of graphically convergent trajectories with initial points
convergent to is a trajectory with initial point (however,
this does not mean that every trajectory from is a limit of
some trajectories with initial points different from, but conver-
gent to ).

Example 2.5: Let be a function. Consider a
differential equation and, for simplicity, sup-
pose that maximal solutions to it are complete. With each such
solution we can identify a hybrid trajectory with dom

. Let be the set of all such hybrid trajectories.
(B1) is trivially satisfied, while (B2) follows from the definition
of a solution to a differential equation. If is locally bounded
(which is the case if is continuous), then trajectories
are uniformly continuous, locally with respect to . Then (B3)
is equivalent to assuming that pointwise limits or local uniform
limits of (locally eventually bounded) sequences of elements of

are in . Classical results say that (B3) is satisfied when is
continuous. When solutions exist and are unique for each initial

condition (for example when is locally Lipschitz continuous)
then (B3) reduces to continuous dependence of solutions on ini-
tial conditions (in the uniform metric on compact intervals, or
pointwise as used by [18]) while (B2) becomes the semigroup
property as used by [18]. Hence, (B1)–(B3) is met by the “dis-
continuous Carathéodory systems” of [24], where is discon-
tinuous and a solution closure property, corresponding to (B3)
but stated in terms of local uniform convergence, is assumed.
The importance of properties (B2), (B3) for differential inclu-
sions resulting from Filippov’s regularization of a discontinuous

were recognized already in [29, Chapter 3].
A hybrid trajectory is called nontrivial if dom contains

at least one point different from , complete if dom is
unbounded, and Zeno if it is complete but the projection of dom

onto is bounded. We say that is continuous complete
if dom and instantaneously Zeno if dom

. A trajectory is called maximal (with
respect to ) if there does not exist such that is a
truncation of to some proper subset of dom . A trajectory

is precompact if it is complete and is compact.
Finally, we write as the subset of hybrid trajectories in

starting at .

B. Hybrid Systems Generated by Outer Semicontinuous Data

We now show that the systems in Definition 2.3 subsume
those studied in [9], [10], and [11]. The latter have the form

(1)

where the set-valued mappings (flow mapping) and (jump
mapping) describe the continuous and the discrete evolutions,
respectively, and the sets (flow set) and (jump set) say
where these evolutions may occur. We will also restrict the solu-
tions to be in a state space . denotes the set of all solutions
to . Formally, a solution to is a hybrid trajectory such that

and the following.
(S1) For all such that such that has nonempty
interior, where
is absolutely continuous in on and, for almost all

(S2) For all such that

The following theorem collects some results from [11].
Theorem 2.6: If the data of satisfies the

following.
(A0) is an open set.
(A1) and are closed sets relative to .
(A2) is outer semicontinuous and locally
bounded, and is nonempty and convex .
(A3) is outer semicontinuous and is
nonempty and for all ; then satisfies
(B1)–(B3).

The set-valued mapping is outer semicontinuous
if for every convergent sequence of s with , and
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every convergent sequence of .
Similarly for . is locally bounded if for every compact

there exists a compact such that .
For locally bounded mappings that have closed (and, hence,
compact) values, outer semicontinuity agrees with what is often
called upper semicontinuity; see [11] or [34].

Even if one originally considers a hybrid system with
single-valued but discontinuous flow and jump maps (as often
is the case in hybrid feedback control of nonlinear systems),
accounting for arbitrarily small measurement noise leads to
systems with set-valued data satisfying (A1)–(A3); see [13].

Lemma 2.7: Suppose that satisfies (A0)–(A3) and
that . Then for any precompact
there exists such that for all

(i.e., the elapsed time
between jumps is uniformly bounded below by a positive
constant).

Proof: By local boundedness of and precompactness of
is bounded and for some for

all . Let be the set of all
points in dom at which a jump occurs ( can be finite or in-
finite). Then is compact by precompactness of ,

, and by relative closedness of in .
By outer semicontinuity of is closed,
and as , the distance between and

is positive, say . Then, for ,
the time interval between and is at least (as the dis-
tance between and is at least ) .

Various subsets of also satisfy the Standing Assumption.
Corollary 2.8: Suppose that satisfies Assumption

(A0)–(A3). Let
be a lower semicontinuous function. Then the subset of
consisting of all solutions to such that

for all ,
satisfies (B3) of the Standing Assumption. If furthermore

is such that for some function we have
for all , then the subset

of solutions satisfies (B2) of the Standing Assumption.
Proof: If is a locally eventually bounded and a

graphically convergent sequence is , then by [9, Lemma 4.3],
the limit, which we call , is a solution to . Moreover, the
sets dom converge (in the sense of set convergence) to dom

; see the proof of [11, Lemma 4.3]. In particular, given any
, there exist for

all large enough ’s, so that and
. If each of ’s satisfies , then by lower semicontinuity

of , so does . This shows the first claim. Now, let
satisfy and for all .
For any , let . Then, for
any ,

since . This shows the
second claim.

Example 2.9 (Autonomous Differential/Difference Inclu-
sions): Given a closed set , let be

Such is lower semicontinuous, and means just that dom
. In particular, for (respectively,

), the set of all solutions to satisfying can be
identified with the set of absolutely continuous functions

satisfying and for all
(respectively, with the set of sequences

satisfying and ) for all .
For the special cases of just mentioned, (B2) is satisfied (tails
of solutions to autonomous differential/difference inclusions are
also solutions) .

Example 2.10: (Dwell-Time Solutions): Consider

.

Note that for such with
if , if . When

and , then reduces to when
, which requires that the jumps be separated by at least

amount of “dwell-time”. This class of solutions is known as
dwell-time solutions. Bounds of the type
for describe solutions with bounded average dwell time.
See [26] and [30].

Example 2.11 (Switched Systems): Fix an integer and
for each let be a con-
tinuous function where the set is open. Consider a
hybrid system in the form (1), with a variable and data

, . Then
meets the conditions in Theorem 2.6. The set includes

representations, on hybrid time domains, of all solutions to the
switched system for which the increasing (and
finite or infinite) sequence of switching times
has no accumulation points or has one accumulation point equal
to . (Note that each solution to a switched system can
be represented on a hybrid time domain, but some solutions to

—those with multiple jumps at an instant—do not correspond
to a solution of a switched system.) For background on switched
systems, see for example [26]. Corollary 2.8 and Example 2.10
show that hybrid time domain representations of certain classes
of solutions to the switched system do satisfy the
Standing Assumption. In particular, such classes include solu-
tions with dwell-time for each , and also solutions
with bounded average dwell-time or reverse average dwell-time
(cf. [30]).

Example 2.12 (Lyapunov-Like Inequalities): Different kinds
of families of solutions to , also meeting the Standing As-
sumption, can be generated by various Lyapunov-like inequal-
ities. For example, for any continuous function ,
and any fixed , the set of all such that, if

then
meets (B3) of the Standing Assumption. (In other words, this is
the set of all such that, if has a th jump, then does not
increase during that jump.) Consequently, the set of all
such that for all
such that meets (B3); it can be easily verified
that this set also satisfies (B2).

For any subset close relative to , the subset of all solu-
tions to such that meets the Standing Assump-
tion. More generally, if satisfies the Standing Assumption and
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is closed relative to , then
satisfies the Standing Assumption.

In contrast, the set of all for which may
not meet the Standing Assumption. Indeed, a sequence of such
solutions can converge graphically to an instantaneous Zeno so-
lution. Another negative example is the set of all which have
exactly jumps (or at least jumps). One can construct a
system and a convergent sequence of its solutions, , so
that all jumps for occur at time . The graphical limit will
have no jumps.

III. WEAK INVARIANCE AND -LIMIT SETS

We define invariance for the set of hybrid trajectories .
Definition 3.1 (Weak Invariance): For the set of hybrid tra-

jectories , the set is said to be the following:
a) weakly forward invariant (with respect to ) if for each

, there exists at least one complete hybrid trajec-
tory with for all ;

b) weakly backward invariant (with respect to ) if for each
, there exist and at least one

hybrid trajectory such that for some
, we have and

for all ;
c) weakly invariant (with respect to ) if it is both weakly

forward invariant and weakly backward invariant.
Our weak forward invariance essentially agrees with the con-

cept of viability used in [7], and if one insists on uniqueness
of trajectories, with invariance as used in [6]. In [7], a set
is viable for a impulsive differential inclusion if for each ini-
tial condition in there exists a complete solution that stays
in . Invariance of a set for impulsive difference inclusions is
also defined and it is based on a viable set but requires all com-
plete solutions starting in to stay in . Similarly, Lygeros
et al. in [6] define invariance of a set but do not restrict the so-
lutions to be complete. Requiring completeness in forward in-
variance and arbitrarily large in backward invariance
leads to the “smallest” possible invariant sets. To verify the for-
ward invariance for sets of trajectories closed under concate-
nation (see Assumption (B5) in Section VII), it is sufficient to
test every point of for the existence of a complete hy-
brid trajectory starting at such that for all

.
Given a hybrid trajectory , a sequence

of points in dom is unbounded if the sequence of ’s
is unbounded, and increasing if for

in the natural ordering on dom .
Definition 3.2 ( -Limit Set): For a complete hybrid trajec-

tory , its -limit set, denoted , is the set of all
-limit points, that is points for which there exists an

increasing and unbounded sequence in dom so
that .

The next lemma extends the results on -limit sets in [35,
Chapter VII], [18, Chapter 1, Section 5, and Chapter 2, Section
5], and [29, Chapter 3, Section 12.4] to hybrid trajectories. It
can be also seen as a generalization of [6, Lemma IV.1].

Lemma 3.3: If is a precompact hybrid trajectory of
then its -limit set is nonempty, compact, and weakly

invariant. Moreover, the hybrid trajectory approaches ,
which is the smallest closed set approached by . That is, for
all there exists such that for all
satisfying .

Proof: For any increasing and unbounded sequence
, the sequence is bounded and has a convergent

subsequence. Thus, . Boundedness of implies that
of . Pick with . By the definition
of , for each there exists an increasing and unbounded
sequence such that as . Let
be such that for all , all . Pick

’s so that for each and .
As , we must have as .
Thus, , and is closed.

We now show the weak invariance. Pick and
. Let be an increasing and unbounded sequence

such that as . For all large ’s, pick
such that

and let for all .
Then by (B2) of the Standing Assumption. Since
is bounded and is locally eventually
bounded with respect to . By (B3), there exists a subsequence

of , graphically converging to some .
As each is complete, so is ; see [11, Lemmas 3.5 and 4.5].
The subsequence can be picked so that converge to
some with , where and

. By the definition of graphical convergence,
and so . Now

define a hybrid arc by . Then
is complete, and by (B2), . Thus, verifies weak for-
ward invariance (at ) and , since is arbitrary, verifies weak
backward invariance, as long as we show that
for all . By the graphical convergence of
to , there exist such
that . By construction,

where is increasing and un-
bounded. Thus, the sequence in dom is
increasing and unbounded, and so is an -limit point of

. Finally, we show convergence of to its -limit set. Suppose
that for some there exists an increasing and unbounded
sequence such that for

. By precompactness of , there exists a convergent
subsequence of ’s. Its limit is, by definition, in .
This is a contradiction.

IV. INVARIANCE PRINCIPLE INVOLVING

A NONINCREASING FUNCTION

The invariance principles we formulate in this section rely
on properties of certain functions not only on the range of the
trajectory in question, but also on the neighborhood of its range.
Invariance principles relying only on the properties of certain
functions on the range of the trajectory will be the subject of
Section V. In what follows, given a hybrid trajectory with
domain dom will denote the least time such that

, while will denote the least index such that
.
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A. Sets of Hybrid Trajectories

We say that a function is nonincreasing along
a hybrid trajectory if for all

such that . The notation
will stand for the -level set of on dom , the domain

of definition of , i.e., .
Lemma 4.1: Suppose a function is nonincreasing

along a hybrid trajectory . If is lower semicontinuous, then
for some . If is continuous, then
for some .

Proof: If , there is nothing to prove. Otherwise,
pick any . By the definition of , there exists

, an increasing and unbounded sequence in dom
, satisfying . Let .

Pick any , and an increasing and unbounded se-
quence in dom with . There
exists a subsequence of such
that for , , and as is
nonincreasing along . If
is lower semicontinuous, taking limits as yields

. If is contin-
uous, then let , and consid-
ering a subsequence of so that

and yields,
in the limit, that . Thus, if is continuous, .

Lemma 4.2: Let be
any functions, the set be such that ,
for all and such that for any trajectory with

(2)

holds for any such that .
Let be a set such that for some

. If is weakly forward invariant, then
. If is weakly backward invariant, then

, where

, that is, is

the reachable set from in hybrid time . If is
weakly invariant, then

Proof: For any trajectory such that for
with for some and

in dom , the fact that is constant along trajectories in
gives

Pick any . If is weakly forward invariant, then there
exists a nontrivial with . If ,
applying the above equation to ,
yields , which shows that . If

for some , then applying the equation

to yields . As is non-
positive, it must be the case that for almost
all . Hence, . If is weakly back-
ward invariant, then there exists , such
that , and for all

. If , then the inequality
above with , shows that

and so . If

for some , then an argument similar
to the one for forward invariance can be given.

The previous two lemmas allow us to establish the first in-
variance principle for hybrid trajectories.

Theorem 4.3 (V Invariance Principle): Suppose that there
exist a continuous function , a set , and
functions such that for any hybrid
trajectory with

for all and (2) holds for any
such that .

Let be a precompact hybrid trajectory such that

for some , which holds when . Then,
for some , approaches the largest weakly invariant
subset of

(3)

Proof: For any precompact trajectory , from Lemma 3.3
we know that approaches its -limit, which is weakly in-
variant. This -limit is the same as the -limit of the truncation
of to s with . By (2), the function

is nonincreasing along the truncation. Thus, is constant on
by Lemma 4.1. Now note that is a subset of inter-

sected with . In turn, this intersection
meets the conditions placed on the set in Lemma 4.2. Thus,
invoking Lemma 4.2, with also replaced by , finishes
the proof.

Corollary 4.4: Suppose that the assumptions of Theorem 4.3
hold.

a) If is Zeno, then, for some , it approaches the
largest weakly invariant subset of

(4)

b) If is s.t., for some , and all
(i.e., the elapsed time between jumps is eventu-

ally bounded below by ), then, for some
approaches the largest weakly invariant subset of

(5)

Proof: If is Zeno, then the weak invariance of can
be verified by instantaneous Zeno trajectories. More specifi-
cally, given with for some increasing
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and unbounded sequence of ’s, the sequence of trajecto-
ries has a graphically con-
vergent subsequence, the limit of which has the domain equal
to (see also the proof of Lemma 3.3) and is such that

. Using this limit in the proof of Lemma 3.3 shows
that .

Regarding (b), note that we can truncate (and we will not re-
label it) so that, for some for all
such that . Pick and an in-
creasing and unbounded sequence with the property that

. Suppose that the sequence given by
graphically converges, say to a trajectory ,

and (consult the proof of Lemma 3.3). If
, then using in the proof of Lemma 4.2 shows that

. In the opposite case, a graphically convergent sub-
sequence can be extracted from the sequence given by

so that its limit is such that
. Furthermore, and

(so verifies the weak backward invariance of at ), and
using in the proof of Lemma 4.2 shows that .

Corollary 4.4 relies on the character of the trajectories ver-
ifying the weak invariance of , rather that on whether
jumps infinitely many times or whether is not Zeno. The ex-
ample below illustrates this, among other things.

Example 4.5: Consider the hybrid system on given
by ,
and . Any solution to this system (recall (S1)
and (S2) in Section II(b)) satisfies (2) with . Let

if if , and
if if . Functions are the
natural bounds on the decrease of , see (8) and (9). For these
functions, is the (closed) upper half plane, is the
(closed) lower half plane, and is the (closed) right half

plane. For the periodic solution given by
for , , and
for , the -limit set is just : the (closed)
upper half of the unit circle and . Note that the domain
of this solution is unbounded in both and directions. For this
solution, for all . Suppose that
Corollary 4.4 were applicable. Taking and , the
set (4) would be the unit circle in the closed fourth quadrant and
the set (5) would be the unit circle in the (closed) upper half
plane. In particular, does not approach either of these two sets
even though dom is unbounded in both and directions, and,
therefore, it will not approach an invariant set included in those
sets. Of course, approaches the largest weakly invariant set
contained in the union of the sets (4) and (5) (as dictated by The-
orem 4.3). This set turns out to be . We note that if

is not used in Theorem 4.3 then we must search for the largest

weakly invariant subset of .

This turns out to be the unit circle, which is larger than .
Note that the strong conclusion in the example above relies

both on the strong (forward and backward) invariance notion
and the set in (4). In contrast, the invariance principle

in [6] would only conclude that the trajectory in the example
converges to the unit circle.

B. Hybrid Systems

For the hybrid systems as in Section II.B, the functions
and of Section IV.A will be constructed from a Lya-
punov-like function and will be denoted by and ,
respectively. One will be determined by the “derivative” of at

in directions belonging to , the other by the difference be-
tween at and at points belonging to . These functions
will be used to bound the increment of as in (2). We begin
by formulating the infinitesimal inequality version of this. Let

be continuous on and locally Lipschitz on a
neighborhood of . Let be any solution to the hybrid system

, and let be such that . The
increment is given by

(6)

which takes into account the “continuous increment” due to the
integration of the time derivative of and the “discrete
increment” due to the difference in before and after the jump.
The integral above expresses the desired quantity since

is locally Lipschitz and absolutely continuous on
every interval on which is constant.

The generalized gradient (in the sense of Clarke) of at
, denoted by is a closed, convex, and nonempty

set equal to the convex hull of all limits of sequences
where is any sequence converging to while avoiding an ar-
bitrary set of measure zero containing all the points at which
is not differentiable (as is locally Lipschitz, exists almost
everywhere). The (Clarke) generalized directional derivative of

at in the direction of can be expressed as

(7)

One of its basic properties is that for any solution to

for almost all . (Note that as is locally Lipschitz, the deriva-
tive on the left above can be understood in the standard sense).
For more details, see [36].

Consequently, the function given by

otherwise
(8)

can be used to bound the increase of along solutions to the
hybrid system. That is, for any solution to the hybrid system, and
any where exists, we have

.
To bound the “discrete contribution” to the change in from

(6), we will use the following quantity:

otherwise
(9)
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Even without any regularity on , one gets the bound
for

any solution to the hybrid system.
Lemma 4.6 (Upper Semicontinuity of and ): If is

continuous on and locally Lipschitz on a neighborhood of ,
then and are upper semicontinuous on .

For the continuous evolution, better bounds on
can be obtained if one does not insist on upper

semicontinuity of the bounding function. We describe two such
improvements. Both are based on the observation that not all
vectors may be selected as the velocity of some
solution to for some . The second alternative
we present also relies on the concept of nonpathological
functions.

For any solution to the differential inclusion
, whenever exists, we have .

Here, is the tangent cone to at . It is the set
of all for which there exists a sequence of real
numbers and a sequence such that for
every . For further details see
[34, Chapter 6] or [37]. Hence, for any solution to the hybrid
system, for almost all ,
where is defined by (10), shown at the
bottom of the page, where . Obviously,

. We note though that for all
since for such . Still, different values

of and on the boundary of may lead to different
invariant sets.

The next construction relies on a concept proposed by Val-
adier [38]. A function is called nonpathological
if it is locally Lipschitz and for every absolutely continuous

the set is a subset of an affine subspace
orthogonal to for almost every . (For recent re-
sults involving nonpathological functions see Bacciotti and Cer-
agioli [24].) Locally Lipschitz functions that are (Clarke) reg-
ular, semiconcave, or semiconvex are nonpathological. In par-
ticular, finite-valued convex functions are nonpathological.

When is nonpathological on an open set containing , for
any absolutely continuous , the set of points

reduces to the singleton for al-
most all ; see [38], Proposition 3. Consequently, the
following function can replace in the bounds on the increase
of :

otherwise.
(11)

where . Clearly,
for all . The condition that there ex-

ists such that means just that is in an
affine subspace orthogonal to . Note that to make (11) resemble

(8) more, we can replace (without really changing anything) the
expression above by . Note that
equivalently, can be used instead of . In any case, for
any solution to the hybrid system, we have

almost ev-
erywhere.

As mentioned before, both and can fail to be upper
semicontinuous. The reason for this is that the set-valued map-
ping , and consequently , does not need to be outer semi-
continuous ( is not an outer semicontinuous map). If one
defines similarly to , but with the maximum over

in , the func-
tion still need not be upper semicontinuous. Indeed, consider the
function given by and the set valued
mapping given by for all .
Then while for (in general,

for all at which ). Thus,
is not outer semicontinuous. Evaluating yields
while for all . This function is not upper semi-
continuous.

We now state the invariance principle for hybrid systems
satisfying (A0)–(A3) when a Lyapunov-like function is pro-
vided that is locally Lipschitz and possibly nonpathological.

Theorem 4.7 (Hybrid V Invariance Principle): Given a hy-
brid system , let be continuous on and lo-
cally Lipschitz on a neighborhood of . Suppose that is
nonempty, and that is precompact with . If

for all , then for some constant , approaches
the largest weakly invariant set in

(12)

If for all and either for all ,
or is nonpathological on a neighborhood of and
for all , then the conclusion holds with replaced
by , respectively by , in (12).

Proof: The bound (2) holds with replaced by
, for any trajectory with . Consequently,

by Theorem 4.3, any precompact trajectory with
approaches the largest weakly invariant set in (3) for some

(with ), and here, the reachable set

is just . Since is upper semicontinuous and
nonpositive on , the set is closed, and the closure
can be omitted. The same reasoning applies when assumptions
involve or , however, since these functions need not be
upper semicontinuous, the closures are necessary.

Consequences of Theorem 4.7, similar to those of Theorem
4.3 stated in Corollary 4.4, can be given. As in Theorem 4.3,
Theorem 4.7 can be written for the case that, for some

.

otherwise
(10)
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C. Relation To Previous Results

As noted in Example 2.5, continuous-time systems parame-
terized by can be viewed as hybrid trajectories with
domains in and that the set of all hybrid trajectories
corresponding to solutions of with continuous
meets the Standing Assumption. Thus, Theorem 4. 7 implies the
original invariance principle of LaSalle [17, Theorem 1] by set-
ting , and . Taking and but
letting be a set-valued map satisfying (A2) of Theorem 2.6 re-
duces Theorem 4.7 to the invariance principle in [20, Theorem
2.11]. Theorem 4.3 implies the principle as stated by LaSalle in
[18, Chapter 2, Theorem 6.4]—the general notion of a derivative
used in [18, Chapter 2, Theorem 6.4] can take the place of
in inequality (2); see [18, Chapter 2, Lemma 6.2] and the com-
ment following it. Theorem 4.3 also implies [24, Proposition 3],
by using the nonpathological derivative of the Lyapunov func-
tion as in (2) and relying on the solutions closure property,
[24, Definition 5], to satisfy our Standing Assumption.

Setting where is a function, and
reduces Theorem 4.7 to a discrete-time systems invariance prin-
ciple [18, Theorem 6.3, Chapter 1]. Indeed, the term
in (12) is irrelevant for discrete-time systems, but it is important
in truly hybrid systems; see Example 4.5.

Theorems 4.3, 4.7 and their corollaries can also be used to
deduce convergence of trajectories of switched systems. Let

be a switched
system and be a corresponding hybrid system, as in Example
2.11. Let be the set of all solutions to this hybrid system
with dwell-time (recall Example 2.10).

Proposition 4.8: For each let be a
continuous function and be a continuously
differentiable function such that for all

. Let for some be such that
Standing Assumption holds for and

for all solutions . Then each pre-
compact solution approaches the largest subset
of that is invariant in the following
sense: for each there exists and: i) and a so-
lution to such that and
for all in ; ii) and a solution to
such that and for all in .

Proof: The bound (2) holds for each
with and for
all . Corollary 4.4 implies that ap-
proaches , the largest weakly invariant (with respect to
and, thus, with respect to the larger set ) subset of

. Thus, approaches
the projection of onto . It remains to show that this
projection is invariant in the sense stated in the proposition.
Pick any and a corresponding . By weak
forward invariance of , there exists a complete
with and
for all . As , we either
have and for some
and all , in which case and

for , or in which
case and for .

Either or , with the corresponding values of ,
provide the needed (forward) solutions. Arguments involving
backward invariance are similar.

When are identical, then the condition
is trivially satisfied

for any solution to the switched system. Thus, the result above
implies that any solution with a positive dwell-time (i.e., an
element of for some ) approaches the set ;
see Section V.C for further generalizations. This is essentially
the invariance principle for switched systems as stated in [28,
Theorem 1]; our result is stronger as the concept of invariance
in Proposition 4.8 involves both forward and backward parts,
and not forward or backward, as in [28]. See [26] for related
results involving multiple Lyapunov functions.

Regarding hybrid systems, a result closely related to our
work, in particular to Theorem 4.7, is [6, Theorem IV.1] which
assumes continuous dependence of solutions on initial condi-
tions, properties quite hard to verify by looking at the data (see
[39] and [40] for some results in that direction). Theorem 4.7 of
this paper relies on semicontinuous dependence, both weaker
and easier to verify (recall Theorem 2.6). Another difference
is the sharper notion of invariance (which includes backward
invariance) used in Theorem 4.7 and the presence of the term

in (12) which leads to a tighter characterization of
the set to which trajectories converge; recall Example 4.5.

V. MEAGRE–LIMSUP INVARIANCE PRINCIPLE

Below, we use the concept of a weakly meagre func-
tion. A function is weakly meagre if

for every family of
nonempty and pairwise disjoint closed intervals in with

. Here, stands for the Lebesgue measure.
Weak meagreness was used previously by Logemann et al.
in [21] to formulate extensions of the Barbalat’s lemma and
resulting invariance principles. Following [21], is weakly
meagre if for some

(13)

In particular, any function is weakly meagre.

A. Case of a General Hybrid Trajectory

Lemma 5.1 (Meagre–Limsup Conditions): Let be a com-
plete hybrid trajectory such that:

(*) For each and there exist and
such that, if for some

then for all such that
.

Furthermore, suppose that for some set with
there exist functions that, for the hybrid

trajectory , satisfy the Meagre–Limsup conditions given by:
a) if the projection of dom onto is unbounded then

is weakly meagre;
b) if the projection of dom onto is unbounded then for

all large enough there exists such
that .
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Then where and are re-
spectively defined by

Proof: Suppose otherwise, that for some
and , for all

. By definition of -limit point, there
is an increasing and unbounded sequence
with as . We can assume that for
all . Let be related
to as in condition (*) and, without loss of generality,
suppose that . Ignoring initial terms if necessary,
we have for all . Consequently,

for all .
For each , either of the two conditions holds:

either or ( flows
for time either before or after );

and jumps within
time before and after ).

Either (1’) or (2’) has to occur for infinitely many ’s. Suppose
it is (1’) and that for such ’s (the other case
is treated similarly). Then, dom must be unbounded in the
-direction. The fact that for any

for infinitely many ’s contradicts weak meagreness of
(note that intervals are disjoint). If

(2’) holds for infinitely many ’s, then dom is unbounded in the
-direction, and for infinitely many ’s and all

we have . This contradicts (b).
The condition (*) in Lemma 5.1 can be viewed as a sort of

continuity of in , uniform “near each point of ”.
The condition automatically holds if is a solution to a hybrid
system that satisfies (S1) and (S2) in Example II-B and sub-
ject to (A0)–(A3). In fact, since is locally bounded,
is Lipschitz in , locally “near each point of ”. Also, (*)
holds if is precompact, and is any family satisfying our
standing assumption. Indeed, suppose that in such a case, for
some and there exist increasing and un-
bounded sequences with ,

, and . By passing to a subse-
quence, we can suppose that (the opposite case is treated
similarly). Since is precompact, the sequence of trajectories

is locally eventually bounded. Let
be the graphical limit of ’s. Then contains both

and some point with . This is impossible.
In Lemma 5.1, , where is

the lower semicontinuous closure of . (Given a set and a
function , its lower semicontinuous closure

, is the greatest lower semicontinuous func-
tion defined on , bounded above by on . Equivalently, for
any . In this terminology,
is the zero-level set of the lower semicontinuous closure of the
function truncated to .) In particular, if both and are
lower semicontinuous, and , then the conclusion of
Lemma 5.1 implies that is a subset of

However, if the assumption that are nonnegative was
weakened to say that they are nonnegative only on , the
last conclusion above may fail.

Let be a precompact hybrid trajectory for which there exist
functions and such that (2)
holds for the hybrid trajectory for all
such that . Then satisfy
conditions (a) and (b) of Theorem 5.1. In fact, there exists a
constant for which

for any (this shows that is integrable
on and, thus, weakly meagre, while to satisfy (b), one
can take ).

Based on the previous discussion, the next result shows that,
when a function with the right properties exists, the condi-
tions (a) and (b) of Lemma 5.1 are guaranteed.

Corollary 5.2: Let be a precompact hybrid trajectory.
Suppose that there exists a continuous function ,
and functions such that for some

for all with , and (2) holds for
the hybrid trajectory for all such that

. Then , where
and are respectively defined by

More precise results can be obtained if the domain of the hy-
brid trajectory is bounded in one of the directions.

Corollary 5.3: Let be a complete hybrid trajectory for
which (*) holds.

a) If the projection of dom onto is bounded and there
exists a function such that

is weakly meagre, then .
b) If the projection of dom onto is bounded and there

exists a function such that, for all
large enough , there exists such that

, then .
Proof: For (a) use for all in the Theorem

above, for (b) use .
If, for a hybrid trajectory, the time between jumps is uni-

formly positive then only (a) of the Meagre–Limsup conditions
needs to be checked to draw the conclusion of Lemma 5.1.

Corollary 5.4: Let be a complete hybrid trajectory such that
(*) holds and for all . If there
exists a function such that condition (a)
of the Meagre–Limsup conditions holds, then .

Proof: In the proof of Lemma 5.1, can be chosen ar-
bitrarily small. Picking shows that (2’) in the proof
of Lemma 5.1 cannot hold; hence (1’) has to hold for infinitely
many times. The proof follows that of Lemma 5.1.
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If multiple instantaneous jumps can occur “only on the zero
level set of ” (for a hybrid system , this is equivalent to

) and is precompact, then only (a) of
the Meagre–Limsup conditions needs to be checked to draw the
conclusion of Lemma 5.1. This is because under such assump-
tion on the jumps, on each compact set away from the zero level
set of , the elapsed time between jumps is uniformly bounded
below by a positive constant.

Corollary 5.5: Given the function , assume
that for all , if , then

. Let be a precompact hybrid trajectory.
Suppose that there exists a function such
that condition (a) of the Meagre–Limsup conditions holds. Then
the conclusion of Lemma 5.1 is true.

Proof: The first paragraph of the proof of Lemma 5.1 can
be repeated. Then, we claim that there exists such
that for all large enough ’s, the following holds.

(1’) either or ( flows for
time either before or after ).

Otherwise, for some sequence of and a subse-
quence , there is a jump at and at

, so that and
are all in dom . Now, consider a sequence

of trajectories given by ,
and pick a graphically convergent subsequence. For the limit
we must have that , and are in dom , while

. This contradicts the assumption. Now, as (1’) has
to occur infinitely many times, the proof can be completed as
for Lemma 5.1.

Based on the results stated so far in this section, various in-
variance principles can be stated.

Corollary 5.6 (Meagre–Limsup Invariance Principle): Let
be a precompact hybrid trajectory. Suppose that for

, , there exist functions
for which the Meagre–Limsup conditions hold. Then con-
verges to the largest weakly invariant subset of

If and are lower semicontinuous, then all the
closure operations above can be removed.

The difference between Theorem 4.3 and Corollary 5.6 is
that, in the latter, properties of are only relevant on the
range of the hybrid trajectory in question. In the former, we
require properties of , and to hold for other trajectories
than the one in question (in particular, for the trajectories ver-
ifying forward invariance of ). One may ask whether the
conclusions of Corollary 5.6 can be strengthened if assumptions
were made on all trajectories; i.e., whether the following is true.

Suppose that there exist functions
such that, for all , conditions (a) and (b) of Lemma
5.1 hold. Let be a precompact hybrid trajectory.
Then converges to the largest weakly invariant subset of

.

This turns out to be impossible. Such a conclusion is not
a byproduct of the trajectories considered here being hybrid;

rather, it is caused by not being lower semicontinuous. We
illustrate this with an example in continuous time.

Example 5.7: Consider the nonlinear system given by
, where

is any smooth function
such that when . Except
for the trajectory for all , the trajectories
with initial points not on the unit circle rotate and get closer to
the unit circle (while “slowing down” in the neighborhood of

). In particular, their omega limit set is the unit circle. The
trajectories originating on the unit circle converge to (and
so their omega limit set is ). Let be given
by when and when

and or when and
. One can verify that for all trajectories of the system,
is weakly meagre. However, it is not true that the omega

limit of any nonzero trajectory originating not on the unit circle
(such omega limit is the unit circle) is in the closure of the zero
level set of (which is the union of the upper unit semicircle
and the origin).

B. Case of a Solution to a Hybrid System

For hybrid systems, the natural counterparts of , that is
the functions and , as defined by (8) and (9), are upper
semicontinuous. This does not lead to significant improvements
over the results in the previous subsection.

Corollary 5.8: Given a hybrid system , let
be continuous on and locally Lipschitz on a neighborhood of

. Suppose that is nonempty and is a precompact
solution to with . If

for all , then for some constant , approaches
the largest weakly invariant set in

(14)

If for all and either for all
or is nonpathological on a neighborhood of and

for all , then in (14) can be replaced
by (respectively, ), defined analogously, with
(respectively, ) replacing .

If, in Corollary 5.8, we have , then can be
replaced by , based only on upper
semicontinuity arguments; similarly for . The resulting
conclusion for locally Lipschitz (about the invariant set ap-
proached by ) is the same as that of Corollary 4.7. Furthermore,
if then , and, if is
nonpathological, [here,
is the upper semicontinuous closure of (respectively, )].
The resulting conclusion is weaker than Corollary 4.7, where

(and ) appears. This shows that relying on prop-
erties of along all trajectories in , rather than just along

, leads to stronger results when continuity or semicontinuity
(of and ) can not be used. We add that if is contin-
uous on , then reduces to ; similarly for

and . A similar result to Corollary 4.4 can
be written when a single trajectory is considered.
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Corollary 5.9: Let the assumptions of Corollary 5.8 hold.
a) If is Zeno, then, for some constant , it ap-

proaches the largest weakly invariant set in

b) If is such that, for some , and all
(i.e., the elapsed time between jumps

is eventually bounded below by a positive ), then, for
some approaches the largest weakly in-
variant subset of

Proof: Part (a) is just a restatement of (b) in Corollary 5.3.
Part (b) follows from Corollary 5.4.

Of course, as in Theorem 4.3, Corollary 5.8 can be written
for the case that stays in after some .

C. Relation to Previous Results

A reduction of the results of this section to continuous-time
systems, much like what we noted in Section IV.C, is also pos-
sible. Lemma 5.1 implies [20, Theorem 2.10], (which, in turn,
implies the result of [19]) because condition (*) of Lemma 5.1 is
satisfied for solutions of differential inclusions discussed in [20]
and the set is exactly when is
lower semicontinuous, as assumed in [20, Theorem 2.10]. Fur-
thermore, results of this section can also be applied to switched
systems. For example, via Corollary 5.4 and a simple trick of
building a solution with dwell-time from what [26]
calls a p-dwell solution with parameters , we can
recover results like [26, Theorem 4 and 8].

VI. LOCATING WEAKLY INVARIANT SETS USING

OBSERVABILITY OR STABILITY AND DETECTABILITY

Now we extend results on stability and convergence, and the
implications of observability and detectability, from differential
equations to sets of hybrid trajectories .

A. Observability

Definition 6.1: Given sets , the distance to
is observable relative to for the set of trajectories if for
every nontrivial trajectory such that we have

for all .
Classically, (zero-state) observability means that if the output

of a system is zero, the state is identically zero. If, for a certain
(output) function , we say that the
distance to is observable through (the output) .

Basic properties based on observability are stated below,
under the assumption that and are compact subsets of
and the distance to is observable relative to for the sets of
hybrid trajectories :

a) the largest weakly invariant set in is a subset of ;
b) if is a continuous and positive definite

function with respect to is precompact, and the
Meagre–Limsup conditions hold for with , replaced
by , then converges to .

B. Relative Stability and Detectability

In differential equations, detectability is the property that
when the output is held to zero, complete solutions satisfy

. Below, we generalize this notion.
Definition 6.2 (Detectability): Given sets , the

distance to is detectable relative to for the set of trajectories
if for every complete trajectory such that

we have .
As discussed in [41], this detectability condition can be un-

derstood as having an -limit point at . As for observability,
if for some function , then we say that
the distance to is detectable through .

Definition 6.3 (Relative Stability): Given sets
is stable relative to for the set of trajectories if for any
there exists such that any trajectory with

and is such that .
Stability of is the same as stability relative to . When

detectability (as in Definition 6.2) is combined with relative sta-
bility, the usual detectability is recovered.

Lemma 6.4 (Detectability and Relative Stability): Let
be compact. If the distance to is detectable

relative to and is stable relative to , then each complete
trajectory with converges to .

Example 6.5: For , and closed
, consider the hybrid system given by

when when

For simplicity, assume that . The motivation for this
type of systems comes from many applications, like sample-data
control, reset systems, etc. Suppose the following.

Let be such that there exists matrices
, and that satisfy

where the first inequality is for all and the
second one for all .

This assumption holds in particular when the pairs
and are detectable (in the linear sense) and the de-
tectability of both pairs can be verified with a common Lya-
punov function (which is quadratic and given by ).

Let be the set of solutions to , any subset of
, and . By definition of , trajecto-

ries that remain in are also trajectories of the output injected
hybrid system defined as

Stability of (for the system above and, hence, for relative to
) can be easily verified with the use of the common quadratic

Lyapunov function . Moreover, by Corollary 4.7
with and , every trajectory that stays in con-
verges to . Hence, the distance to is detectable relative to
for the set of hybrid trajectories . We point out though that

is not a necessary condition for detectability of relative
to , it is only sufficient.
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Note that for LTI systems the concepts of relative stability and
detectability introduced above reduces to the standard one in
the literature. For instance, for the continuous-time LTI system

with output , detectability of the pair is
equivalent to the distance to being detectable relative
to subsets of .

Theorem 6.6 (Detectability and Invariance Principle): Let
be compact, and suppose that is stable relative to

for the set of trajectories . Then the following statements
are equivalent.

a) The distance to is detectable relative to .
b) The largest weakly invariant set in is a subset of .

Proof: Let be the largest weakly invariant set
in . Suppose that there exists . Let . By
stability of relative to , there exists such that every
hybrid trajectory withrge and
satisfies . By weak backward invariance of

, there exists a trajectory such that for some
and for all

(in particular ).
Note that by stability, since , we have

for all
. In this way, we can construct a sequence such

that for every , there exists
with and for all

. As is compact, the se-
quence is locally eventually bounded. By the Standing
Assumption, it has a subsequence (that we will not relabel) con-
verging to some , with . Since
dom are “increasing”, is complete; see [11, Lemma 3.5].
Finally, , and also . The second
inclusion, by detectability of relative to , relative stability
of , and Lemma 6.4 , implies that converges to . This is
a contradiction with the first inclusion. Any trajectory

with is precompact, by compactness of ,
and as such, it converges to its -limit. Since the -limit is in-
variant and a subset of , it must be a subset of . Hence,
converges to .

Corollary 6.7: Let be compact subsets of , with
stable relative to and with the distance to detectable on

, and let be a continuous and positive definite
function with respect to . If is precompact and the
Meagre–Limsup conditions hold for with replaced by

, then converges to .

C. Uniform Convergence

Stability and detectability of the distance to a compact set
relative to a compact set leads to uniform convergence.

Theorem 6.8 (Uniform Convergence): Let be
compact. Suppose that is stable relative to and the dis-
tance to is detectable relative to . Then, for each ,
there exists such that for each complete trajectory

with we have for all
.

Proof: Suppose otherwise. Then, for some , there
exist a sequence of complete trajectories such that

and a sequence with

such that . By relative stability of , there ex-
ists such that for each for
all . Since is compact, the sequence

is locally eventually bounded, and, by the Standing As-
sumption, it has a graphically convergent subsequence. Its limit,
let us call it , is complete (since each is complete; see [11,
Lemma 3.5]) and such that . Furthermore, for all

. This contradicts the detectability
assumption.

VII. ASYMPTOTIC STABILITY

A. Definitions and a -Characterization

For results on uniform convergence without a priori restric-
tion of the trajectories to a compact set, we need an additional
condition. Besides the Standing Assumption, from now on we
also suppose the following.

(B4) Any sequence of hybrid trajectories in for
which initial points converge to a point where
every maximal solution is complete, is locally
eventually bounded.

For solutions to hybrid systems, this property requires local
boundedness of . With the other growth properties of and
the fact that maps to , its local boundedness is equivalent to
local boundedness with respect to : for any compact
there exists a compact such that .

Theorem 7.1 [11, Theorem 4.6, Theorem 4.6]: If the hybrid
system with state space satisfies (A0)–(A3) and

is locally bounded, then satisfies (B4).
Definition 7.2 (Attractivity): A set is attractive for

the set of trajectories if there exists such that for any
, each maximal trajectory is complete

and satisfies .
We denote by the basin of attraction of a compact set ,

i.e., the set of all points for which is nonempty, each
is complete and such that .

The set is said to be asymptotically stable if it is both stable
and attractive. For the basin of attraction of an asymptotically
stable set to be forward invariant, another assumption needs to
be placed on :

(B5) For any , any , and any
, the hybrid trajectory defined on

given by for
, and for such that

is an element of .
The assumption means that a concatenation of two solutions

is still a solution. (Recall that assumption (B2) required that
tails of solutions be solutions.) It automatically holds for the
hybrid system as in Section II-B, and here, it guarantees that
if then for any we have .

Given an open set and a compact set , a
proper indicator for on is a continuous
function that is positive definite with respect to and proper
with respect to . A function
is said to belong to class if it is continuous, is
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zero at zero and nondecreasing, and are non-
increasing and converge to zero as , respectively, go to .
We say that the set of hybrid trajectories is forward complete
on if for all , every is complete.

Definition 7.3 ( stability): Let be contin-
uous. The set of hybrid trajectories is said to be -stable
with respect to if it is forward complete on and there exists

such that, for each , every satisfies

Theorem 7.4: Suppose that, for the set of trajectories , the
compact set is locally asymptotically stable, and its basin of
attraction can be expressed as where is
open and is closed relative to . Then, for each proper
indicator for on is -stable with respect to .

Proof: The proof follows that of Theorem 6.5 in [11]. The
expression for is used to conclude that the set

is compact for any , while with (B5), the
reachable set from any subset of is a subset of . Other
arguments, including those leading to Propositions 6.2 and 6.3
in [11], carry over essentially without change.

A particular case when a basin of attraction can be described
as in the theorem above is when the range of , i.e.,

, is closed relative to and when every max-
imal solution in is complete. Indeed, then it can be shown
that is open relative to (related result for hybrid systems

is in Proposition 6.4 of [11]). Then one can take
and an appropriate open exists by the definition of a rela-
tively open set. We add that by (B2) of the Standing Assumption,

, and by (B3), is closed whenever it is
bounded with respect to . For hybrid systems as described
in Section II.B, is always closed under (A0)–(A3). We con-
clude this section by illustrating the need for some closedness
assumptions on .

Example 7.5: Let be the set of all solutions to the hybrid
system given on by and

if if
if (such hybrid system can be identified with a

difference equation, and, thus, in what follows, we do not men-
tion ). Note that such a system does not meet (A0)–(A3) since

is not closed relative to . However, the set does meet the
assumptions (B0)–(B5). Indeed, the only potential “trouble” is
the sequence of solutions with . For example, take

. Then , and
for . The graphical limit of such a

sequence is given by for
. Clearly, . However, the sequence of ’s is

not locally eventually bounded (as as ), so
(B3) is not violated. The fact that ’s are not locally eventually
bounded does not violate (B4), as there are no solutions starting
from 2 at all.

Now, notice that for is asymptotically stable, and
(and, thus, ). However, there is no

bound if is a proper indicator of with respect to . Indeed,
any function such that for

would need to satisfy for all ,
which is impossible. In common words, trajectories originating

far from the boundary of get arbitrarily close to the boundary
(before approaching ).

In order to make (and, thus, , the range of ) closed, one
could include a solution (maximal, but
not complete) in . Assumptions (B0)–(B5) are still satisfied.
The set now equals , but
remains unchanged. Any open set such that
must not contain 2. The solutions considered above are now
such that approach the boundary of as , and so

for any proper indicator of with respect to .
For such , a bound can be written down.

B. Lyapunov and Krasovskii Theorems for Hybrid Systems

In what follows, we work with hybrid systems with
data as described in Section II.B. We re-
place the Standing Assumption by the following assumptions:
(A0)–(A3), locally bounded (see Theorem 7.1) and the
following.

(VC) For each and for some neighborhood of
, for every .

(VD) For each .
The conditions (VC) and (VD) guarantee existence of solu-

tions; see [11, Proposition 2.4]. A particular consequence of
them is that any maximal solution to is either complete or
eventually leaves any compact subset of .

Theorem 7.6: (Hybrid Krasovskii) Given a hybrid system ,
suppose the following.

is compact, is a neighborhood of
is continuous on , locally Lipschitz on

a neighborhood of , and positive definite on with
respect to , and and satisfy

for all .
Then is stable. Suppose additionally that

there exists such that for all the
largest weakly invariant subset in (12) is empty.

Then is locally asymptotically stable.
Proof: Assume and let be small enough so that

. We claim that there exists such that

(15)

Certainly, as is positive definite on with respect to ,
there exists so that for

implies . Now note that as
for all and is positive definite on with respect to

. By outer semicontinuity and
local boundedness, the mapping is “upper semicontinuous”,
in particular there exists so that .
Using positive definiteness of again, one can find
so that and imply

. To make the implication (15) true,
one now takes .

Based on (15), we claim that the set

(16)
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is (strongly) forward invariant for , that is for any
with , . Indeed, pick any and let

. If , then
. If and for some

, then by continuity of , for some
but

and (the latter is true as is nonincreasing
along ). By (15), . This is a contradiction. Thus,

. The facts just shown are enough to conclude
that is forward invariant.

Finally, by continuity of , given any small enough
and so that (15) holds, we can find so that

implies . Relying on forward
invariance of , each maximal with is
so that . Thus, is stable.

Now assume ( ) and . To show attractivity, note that
given with , we can find
as in condition so that in (16) is forward invariant (i.e.,
one can pick in the proof of stability of arbitrarily small).
In particular, if is associated with as in the paragraph above,
any with is precompact. As such, by
Theorem 4.7, it converges to the largest weakly invariant subset
of the set given by (12). It must be the case that as is
nonincreasing along , and then . As is nonempty,

converges to the largest weakly invariant subset of (12) with
which, by positive definiteness of , is a subset of .

Hence, is attractive.
We note that in Theorem 7.6, the function could be re-

placed by , or if is also nonpathological, as long as
in (12) is replaced by or . (In fact, the

result could be stated in terms of any functions for which
(2) holds for all solutions to the hybrid system ; the justifica-
tion would involve Theorem 4.3.) Similarly, or could be
used in the results below; for the sake of clarity we choose not
to state them in the greatest generality.

Corollary 7.7: (hybrid Lyapunov) For a hybrid system ,
suppose that of Theorem 7.6 holds, and that furthermore

for all . Then is attractive
and, hence, locally asymptotically stable.

The following result states that when (respectively, ) is
negative in points near a compact set and instantaneous Zeno so-
lutions (respectively, complete continuous solutions) converge
to the compact set, then it is asymptotically stable.

Theorem 7.8: For the hybrid system , suppose that of
Theorem 7.6 holds. Suppose that either:

a) for each ;
b) any instantaneous Zeno solution to with

converges to ;
or

c) for each ;
d) any complete continuous solution to with

converges to .
Then is locally asymptotically stable.

Proof: Stability of is guaranteed by Theorem 7.6. To
show attractivity, pick as in the last paragraph of the proof
of Theorem 7.6. Pick any and any . Then

, where is given by (16), and in particular,
. Given any , let be any solution to

verifying the forward invariance of , i.e., . By
Lemma 4.1, is constant along . Suppose that

for all , so in particular
. If assumptions a) and b) hold, then by a) and Lemma 4.1,
is instantaneously Zeno since . Hence, by b), it

converges to . But this contradicts being constant along .
If assumptions c) and d) hold, then by c) and Lemma 4.1, has
no jumps, i.e., it is a complete continuous solution. Hence, by d),
it converges to . This again contradicts being constant along
. Thus, for all and consequently,

. This implies that converges to .

VIII. CONCLUSION

In the appropriate framework, the most general invariance
principles from continuous-time or discrete-time dynamical
systems can be extended, with no loss of generality, to the
setting of hybrid systems. As an application, these extensions
enrich the set of tools available for establishing asymptotic
stability of compact sets in hybrid control systems. They permit
stability proofs using Lyapunov functions that do not strictly
decrease along both flows and jumps, and also trajectory-based
proofs, perhaps based on small-gain theorems expressed in
terms of detectable outputs. These tools can be used to readily
assist in the analysis of many physical examples, including the
bouncing ball system, Newton’s cradle, and swing-up of an
inverted pendulum on a cart.
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