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Advanced Biostatistics        15 January 2008 

 

 

Chapter 1.  Quick Review of Basic Biostatistics – students are strongly advised to work though an 

introductory text as well! 
 

 

       |---discrete 

1. (Random) Variables (RVs) are |---quantitative | 

        |  |---continuous 

     | 

|  |---nominal 

|---qualitative | 

|  |---ordinal 

 

2. Examples of RVs are number of head’s obtained when you toss a coin 100 times (discrete), your exact 

age (continuous, if you don’t round off), your hair color (nominal), your understanding of molecular 

genetics if you choose from the list: excellent, good, moderate, fair, poor, horrible, non-existent. 

 

3. Quantitative RVs have distributions.  Examples of discrete distributions are the binomial, Poisson, 

geometric (number of coin tosses necessary to get the first head), uniform (on the integers 1, 2, …, n).  

Examples of continuous distributions are the normal (or Gaussian), chi-square, t-, F-, a continuous 

version of the uniform, etc.  These distributions have probability functions (called pdf’s for 

probability density functions) associated with them; for the Binomial distribution with n independent 

trials and with success probability π, for example, the pdf is 

 

        P(y) = nCy π
y 
(1-π)

n-y
, for y = 0, 1, 2, …, n. 

 

Distributions also have so-called moments associated with them (in some cases some of these are 

infinite though); the first moment is the mean (µ) and the second (centralized) moment is the variance 

(σ
2
).  For the Binomial, the µ = nπ and σ

2
 = nπ(1-π).  For other distributions, these formulas don’t 

hold, but their moments can still be obtained using the definitions µ = E(Y) and σ
2
 = E[(X - µ)

2
]. 

 

4. If we sample (randomly) from a known distribution, we are often interested in understanding what to 

expect for the distribution of a statistic such as the sample proportion (denoted “p” here) or a sample 

mean (denoted “y-bar” here).  The Central Limit Theorem (CLT) tells us that as long as the sample 

size is large enough, these distributions will be approximately bell-shaped (normal) even when the 

underlying population distribution is not.  The CLT goes on to tell us about the mean and standard 

error (counterpart of the SD) of these distributions; Samuels & Witmer cover this in Chap. 5. 

 

5. The above scenario is unrealistic since we never (rarely) know the underlying population distribution, 

but it is helpful since, by reversing the inherent logic, we can set confidence intervals (CI’s) or 

perform hypothesis tests (HT’s) regarding the population parameters based on what we see in our 

sample.  For example, in one (random) sample where we record a quantitative rv, we can set a CI for 

the true mean (µ) by using the usual t-distribution; similarly we can test (HT) whether this unknown 

population mean is equal to a specific number again using the t- test statistic.  An important 

application of these methods involves the paired t-test, such as is useful for a “before-and-after” study 
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or for a “twins study” in which one sibling gets drug A and the other gets drug B.  In this case, we 

work with the differences of the quantitative measurements.  Sometimes, for a single sample 

involving the Binomial setup, we are interested in setting a CI for the unknown success probability, π.  

Instead of the usual estimator, p = y/n, students are usually perplexed as to why the CI is based on 

another estimator, p-tilde = (y+2)/(n+4).  We return to this situation and give the motivation for why 

the latter (p-tilde) is better than the former (p) in Chapters 2 and 3. 

 

6. An easy extension of the above (paragraph 5) occurs when we want to compare (via a CI or HT) the 

(population) means of two independent groups (e.g., M’s versus F’s, those who got drug A versus 

those who got drug B, etc.).  In this case, our CI or HT is based on the two independent sample t-

statistic, with two variants: one where we can assume the population variances are the same (less 

common, I suppose) and one where we cannot.  Extensions of the latter situation (unequal variance 

two-independent sample t-test) does not generalize as easily to one-way ANOVA and simple linear 

regression as the former situation, although we will manage to do so using likelihood-based 

asymptotic tests and methods. 

 

7. Categorical count data are usually (though not always) analyzed using chi-square methods.  It is 

important to remember that the square of a standard normal RV has a chi-square distribution with one 

df (denoted χ1
2
), so it is not surprising that 2x2 contingency tables can be analyzed using chi-square 

and normal methods.  It’s important to distinguish between the analysis of contingency tables of count 

data and goodness of fit (GOF) tests since both are based on chi-square statistics.  We use GOF tests, 

for example, to test a genetic theory that progeny occur in the anticipated 12:3:1 ratio anticipated from 

our genetic theory and the underlying Punnett square.  For GOF tests, the null hypothesis is specified 

by the underlying theory (or common sense), and the alternative is looking for departures from this 

theory.  Contingency tables, on the other hand, have two dimensions (sometimes more!): for rows and 

columns, and the cells contain count data – the easiest case is a 2x2 CT.  As an example, consider the 

following table corresponding to whether mothers smoked during pregnancy and the child’s birth-

weight. 

 

  Birth Weight Total 

  Low Normal  

Smoker 237 3489 3726 Smoking Status 

during Pregnancy Non-smoker 197 5870 6067 

Total  434 9359 9793 

 

 

Note that this table is of the (general) form 

 

  Factor Y Total  

  Level Y1 Level Y2  

Level X1 n11 n12 n1* Factor X 

Level X2 n21 n22 n2* 

Total  n*2 n*1 n 

 

 

Our usual chi-square test tests for an association for factors X and Y.  For the smoking data, the 

following Minitab is relevant. 
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Chi-Square Test: LowBW, NormBW  
 
Expected counts are printed below observed counts 

Chi-Square contributions are printed below expected counts 

 

        LowBW   NormBW  Total 

    1     237     3489   3726 

       165.13  3560.87 

       31.284    1.451 

 

    2     197     5870   6067 

       268.87  5798.13 

       19.213    0.891 

 

Total     434     9359   9793 

 

Chi-Sq = 52.838, DF = 1, P-Value = 0.000 

 

The chi-square statistic here (52.838) is highly significant, so we conclude there is an association 

between smoking and low birth-weight, but we are usually interested in more than this.  If we define 

π1 as the probability of a low birth-weight baby for the smokers, and π2 as the probability of a low 

birth-weight baby for the non-smokers, then sometimes we want to set a CI for (π1 – π2).  Since this 

procedure is discussed at length in introductory texts (see Samuels and Witmer, p.439), consider 

instead the relative risk, RR = π1 / π2, and the odds ratio, OR = [π1 / (1 – π1] / [π2 / (1 – π2]; sometimes 

OR is expressed using θ.  For the above date, the estimate of RR is 0.063607 / 0.032471 = 1.9589 

(approximately 2) since p1 = 237/3726 = 0.063607 and p2 = 197/6067 = 0.032471.  For the same data, 

the estimate of the odds ratio (θ) is q = (n11* n22)/( n12* n21) = (237*5870)/(197*3489) = 2.0240 (also 

approximately 2).  We set a 95% CI for θ using the following procedure: log(2.0240) = 0.705096, and 

SQRT{1/237 + 1/197 + 1/3489 + 1/5870} = 0.098755.  Thus, a 95% CI for log(θ) is 

  0.705096 +/- 1.96*0.098755  or  (0.511536 , 0.898656). 

Finally, the 95% CI for θ is (exp{0.511536} , exp{0.898656}) = (1.668 , 2.456).  Note that this 

interval does not include unity (1). 

 

8. The chi-square test in paragraph (7) is only valid asymptotically (for large samples), and Fisher’s 

Exact Test (FET), discussed in Samuels and Witmer p.432ff, is used for small samples or in situations 

where a nonparametric test is desired.  This test is based on the hypergeometric distribution, and is 

useful for drug testing involving human subjects. 

 

9. Two continuous random variables – one called the dependent variable (Y) and the other the 

independent variable (X) – can be related using simple linear regression (SLR), which posits 

 

E(yk) = β0 + β1xk , for k = 1, 2, …, n 

 

This model makes several underlying assumptions (of which students should be aware!), and ordinary 

least-squares (OLS) or equivalently maximum likelihood (ML) methods are used to estimate the 

unknown intercept (β0) and slope (β1).  Testing whether the slope is zero (β1 = 0) is equivalent to 

testing that the independent variable is not a good predictor of the dependent variable.  A related 

concept is the linear correlation coefficient, ρ, and we note that β1 = ρ *(σY/ σX), so we can see that 

testing whether the slope is zero is equivalent to testing whether the correlation coefficient is zero.  

Unfortunately, more involved methods are needed for setting a CI for ρ, and these are addressed in the 

next Chapter. 
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10. Interestingly, regression on a dummy variable is the equal variance independent sample t-test (see 

Samuels and Witmer, p. 577).  More specifically, consider the following setup involving testing for 

equality of two means associated with drugs A & B, where n1 patients are randomized to receive drug 

A, and n2 patients are randomized to receive drug B.  Here, the relevant null hypothesis is H0: µA = µB.  

Next, define the dummy variable,  

 

Dk  = 1 for k = 1, 2, . . . , n1 (drug A)  

= 0 otherwise (n2 patients; drug B) 

 

Then for the SLR model 

 

E(Yk) = β0 + β1Dk , for k = 1, 2, …, n = n1 + n2,  

 

the right hand side is equal to (β0 + β1) for the n1 patients who received Drug A, and is equal to β0 for 

the n2 patients who received Drug B.  Further, the left hand side is equal to µA and µB respectively.  

Therefore testing whether the slope parameter (β1) is equal to zero is equivalent to testing H0: µA = µB 

since β1 = (µA – µB).  Thus, SLR with a dummy variable is equivalent to the equal-variance 

independent sample t-test.  One-way ANOVA with d drugs extends this idea by introducing (d-1) 

dummy variables. 

 

11. The last topic covered in introductory biostatistics courses is one- and two-way ANOVA.  An 

illustration of one-way ANOVA involves comparing the means (e.g., of efficacy as measured using 

some quantitative measurement) of three drugs, A, B and C.  The null hypothesis states that these 

three means are equal, this hypothesis is tested using the usual F statistic (for Fisher), and when it is 

rejected, mean separation procedures (MSP’s – also called multiple comparison procedures, MCP’s) 

such as Tukey’s Honestly Significance Procedure, Fisher’s Least Significance Difference procedure, 

the [Student] Newman-Keuls method, the Bonferroni procedure, or any of a long host of methods to 

decide which means differ from one another; the MCP’s are discussed in Samuels and Witmer, section 

11.8.  A two-way ANOVA analysis would be appropriate if we wanted to study three drugs (A, B, C) 

and two methods of delivery (tablet versus injection).  Here, “drug” and “method of deliver” are called 

factors, and A, B, C, tablet, and injection are called levels of these factors.  We take up these concepts 

in more detail in Chapter 3, but interested students can check out Samuels and Witmer’s discussion of 

two-way ANOVA and especially interaction in their section 11.7. 

 


