-Goodness of fit index: measures how well fitted distances match observed proximities

-Two methods that optimize goodness of fit indices (combine multidimensional scaling and goodness of ft indices)

-These two methods are: 1. classical multidimensional scaling  2. non-metric multidimensional scaling

-the two methods will be explained and used to analyze Tables 14.1 and 14.2 

(p. 228-229)

CLASSICAL MULTIDIMENSIONAL SCALING
-one way to estimate q, and the n, q-dimensional, coordinate values x1,x2…,xn, from observed proximity matrix

-note absence of a unique set of coordinate values (Euclidean distances don’t change when changing configuration of points, rotating, reflecting, etc.)

-can’t uniquely find out location or orientation of the configuration

-orthogonal transformation can be done to any configuration 

-transformations used at times to help interpret solutions

-we assume proximity matrix is one of Euclidean distances D from raw data matrix X

-doing basically reverse of what we did before: finding X from the Euclidean distances

- number of complex calculations
-p. 231

-eq 14.1: gives elements of matrix  B

-eq 14.2: squred Euclidean distances in terms of elements of B

-can’t get a unique solution for coordinate value unless have location constraint, generally the center of the points is put at the origin

-constraints and eq. 14.1 tell us that the sum of terms in any row of B is always zero

-formula for finding elements of B in terms of squared Euclidean distances (near bottom of page..starts with bij =)
-we factor these elements to get coordinate values

-some more calculations involving eigenvalues/eigenvectors

-best fitting k-dimensional representation given by k eigenvectrs of B corresponding to k largest eigenvalues…adequacy of this representation given by 

(formula near the top of p. 232 beginning with Pk…of the order of 0.8 tell us that we have a reasonable fit) 
-when observed dissimilarity matrix not Euclidean, matrix B not positive-definite…meaning that there’ll be some negative eigenvalues…if the amount of these is small can still use the eigenvectors ties with k largest positive eigenvalues

-we can evaluate our solution using Mardia’s crietion (middle p. 232)

-Sibson had other criterion: Trace (pick # of coordinates so that sum of positive eigenvalues pretty much equals sum of all eigenvalues) and Magnitude (only eigenvalues a lot bigger than biggest negative eigenvalue seen as positive)

NON-METRIC MULTIDIMENSIONAL SCALING

-not like classical scaling where goodness-of-fit measure based on numberical comparison of observed proximities and fitted distances
-this method isn’t always ideal

-in a large number of cases, observed proximities don’t mean much except in regards to rank order…situations where subjects can make only ordinal judgments illustrate this

-Example: if subjects asked to say which color brighter than another they can put in order but can’t quantify the extent something differs

- solutions of this type of scaling rely solely on rank order of proximities, don’t worry about numerical values
-monotonically transforming proximities shouldn’t change solutions

-Monotonic Regression…goal: represent fitted distances were disparities monotonic with observed proximities and resemble fitted distances as much as possible

-having a set of disparities in hand, can find needed coordinates by minimizing a function of squared differences b/w observed proximities and derived disparities (called stress)

