
Class Notes for Chapter 6 
 

Class One 

 Relative potency (ratio of two [Normal or otherwise] means) is 
a nonlinear model – need to use techniques of Chapter 5 here 

 Direct Assay (pp. 1-9) versus Indirect Assay (pp. 9-16) 

 Direct Assay examples (6.1, 6.2, and 6.3); Indirect Assay 
examples (6.4 and 6.5) 

 Example 6.1 – ratio of two independent Poisson means (since 
these are COUNT data) using NLMIXED procedure (p.3).  RP of 
SOAP (n1 = 8) to CONTROL (n2 = 6) is estimated to be 0.6028 
and Wald TS testing equal potency is on the bottom of p.3.  SAS 
implies this TS ~ t14 (some would argue ~ t12 or ~z).  Likelihood 

test REDUCED model is fit on p.4 (is this right?): 1
2 = 28.2, p < 

0.0001.  What is our conclusion here? 

 Example 6.2 (pp.4-6): y = sodium excretion rate SER for two 
treatment groups, NORMAL (n1 = 7) and B10AE (n2 = 7) – since 
original data are R skewed, use log-transformed data 

 If Y2 = 2Y1, then log(Y2) = log(2) + log(Y1).  Y1 is conc. of 
substance 1, etc.  Now, let Z1 = log(Y1), and assume Z1 ~ 

Normal(1,2), etc. for substance 2.  Plots of the Z’s given look 
more Normal with constant variance. 

 New mean relationship is in Eqn. 6.6 and fit in the NLIN which 
produces Output 6.2a.  Now, 95% WCI for true RP is suspect, so 
we do the Likelihood test, and get p = 0.0211. 

 Example 6.3 – Y = prostate size for n1 = 5 CONTROL and n2 = 5 
ESTRADIOL animals.  Plot on p.7: data look Normal (symmetric) 
but variance is not constant.  Let’s model variances too!  If Y2 = 

2Y1, then 2 = 21 and 2
2 = 2

2
1

2.  This is kind of like the 
Seefeldt example (5.8) from last class.  See NLMIXED program 
on pp.7-8 – why can we not use NLIN here?  95% WCI for RP is 



(1.84,5.00).  Profile likelihood curve is on p.9 with cut-lines at 
90% (bottom line), 95% (middle) and 99% (top).  From 95% cut 
line and really good eyes, 95% PLCI is (2.19,5.34).  Conclusion: 
we’re 95% confident that Estradiol is at least 2.19 times as 
potent as Control; since 1 is not in the PLCI, Estradiol is 
significantly more potent than Control. 

 
Class Two: 

 For Indirect Assays, we cannot measure amounts directly, but 
must make inferences indirectly.  We’ll fit dose-response 
curves such as the Binary Logistic or other nonlinear model 
function.  When we do, we usually assess RP (relative potency) 
by the ratio of the LD50’s for the two treatments. 

 Example 6.4 compares two peptides, Neurotensin (N) and 
Somatostatin (S) using Binary Logistic models.  Note the chosen 
design here: either 0.01 and then multiplied by 10k or 0.03 and 
then multiplied by 10k.  Looking at the graph on p.10, looks like 
the doses don’t go high enough. 

 First step: Had to decide which scale to use – jump forward to 

Box-Cox transformation Eqn. 6.14 on p.27: when 6 is near 0 (as 
is the case here), then use log-dose. 

 Now look at the program on p.11, and write down the explicit 

formula for  (success probability). 

 The first NLMIXED here has unequal slope parameters (3) and 
the second one (Reduced one) has a common slope: -2LL’s are 
given in the outputs.  Here, we retain the assumption of 

common slopes (test stat:   
     , p = 0.1213). 

 Then, RP is estimated to be 5.6639 

 Which peptide is more potent? 

 As to CI’s look at Reduced model output (Output 6.4b) on p.12: 
95% WCI, (-1.89,13.2) looks weird.  How so? 



 Profile likelihood plot on top of p.13.  Really good eyesight 

confirms that 95% PLCI for  is (1.59,19.59).  Interpretation is 
after the graph.  Consequence/ramification are …? 

 Example 6.5 on p.13 gives a Normal example with the modified 

MM2 model function in Eqn. 6.9, where 1 is the upper 

asymptote but what is 2 here?  Testing for common upper 
asymptotes – programs on pp.14-15, and here we do the Full-
and-Reduced F test bottom of p.15 (accept same upper 
asymptote). 

 Reduced model is in Output 6.5c, and RP is estimated to be 
≈24, so standard insulin is approximately 24 times more potent 
than the A1-B29 insulin variety. 

 
Class Three: 

 We can assess interaction (synergy or antagonism) using either 
one of the Finney models or the SR model 

 The Finney models combine two x’s (e.g., doses of two drugs) 
in the effective dose formula (Equation 6.10) first, and then 
relates this z (effective dose) to the response variable using 
either Equation 6.11 or 6.12 or some variant of these 

 5 is the key (so-called coefficient of synergy) parameter, with 

- 5 > 0 indicating synergy 

- 5 < 0 indicating antagonism 

- 5 = 0 indicating independent action 

 As noted last class, Equation 6.12 is the binary logistic model 
function using the log-dose scale – in practice, one needs to 
determine which exact scale to use and modify accordingly 

 Example 6.6. Gerig 2 phenolic acids (ferulic and vanillic acids) in 
3 chambers (blocks).  Chosen design in graph on p.19 (six 
support points, only one of which is an interior point).  NLIN 
output on p.20 indicates significant antagonism, but Likelihood 



(Full and Reduced test) gives marginal proof: p-value = 0.0254.  
Clearly need a better study!  See the isobole on p.19. 

 Example 6.7. Upjohn drugs A and B binomial example – design 
in graph on p.22 (plus additional support points).  nk mice given 
a given combination of A and B, and yk = number that die is 
counted; log-scale is indicated (output not shown).  These data 
indicate significant synergy between drugs A and B (p.23). 

 Example 6.8. Carter ethanol and chloral hydrate binomial; 
checkerboard design on p.24.  Maybe a “Ray Design” would be 
better.  Evidence here of synergy (p = 0.0151). 

 Example 6.9.  Machado & Robinson. Y = RT activity (counts).  
Drugs are AZT and DDI.  Ray design on p.25 with 3 interior rays.  
Normal fit produces conclusion of independent action and the 
residual plot on p.25 – Yikes!  Refit using Poisson distribution 
and modelling variance – got similar results, so former is on 
p.26.  Conclude significant synergy between these two drugs. 

 Example 6.10. Chou and Talalay example shows the need for 

the Box-Cox scale parameter (6) since its estimate is neither 
zero (log-dose) nor one (dose) here.  Also, response variable 
here is a fraction, so we take logit transformation to 
(hopefully) achieve Normality. Then, we observe significant 
synergy. 

 
Class Four 

 Sometimes the Finney models are not rich enough and we 
need a larger model such as the Separate Ray (SR) model.  The 
SR model allows for e.g. synergy for one ray, independent 
action for another, and antagonism for yet a third.  Note for 
example that the for the Finney model to fit, the slopes must 
be equal and the LD50’s must line up on an isobole as on p.19 or 



p.22 – the point being that it is a rather ‘narrow’ or restrictive 
model (that said, it does fit in many cases). 

 Lots of notation in the SR model, but the big picture is graph on 
p.29.  Point C is the LD50 for Drug B and point E is LD50 for Drug 
A.  Rays 3 … J … R are interior rays – corresponding to different 
proportions of drugs A and B (with “slopes” ck in Equation 
6.15).  For Ray J, if the LD50 is at the point D, then we have 
independent action.  If it’s closer to the origin, we have synergy 
(further from the origin  antagonism).  A measure of the 
actual LD50 to the one expected under independent action is 

the combination index (r) for each interior ray.  The SR model 
simultaneously fits separate logistic (or otherwise) curves 

along each of the rays, and calculates the r’s. 
 

r = 1  independent action 

r < 1  synergy 

r > 1  antagonism 

 It can be shown that if all the slope parameters (3’s) are equal 

and the r’s follow a specific algebraic relation, then the SR 
reduces to the Finney model. 

 Example 6.11.  Martin.  On pp.30-31, just one interior ray.  Six 
design points on the interior ray, and 5 on the two exterior 
rays.  Point A is the LD50 for Deguelin, point B is LD50 for 
Rotenone, point C is intersection with interior ray, and point F 
(filled circle) is the actual LD50 along the interior ray, so 
 ̂        .  Note that Output 6.10a here is better than 
6.10b (equal slopes) for these data (p = 0.0042).  Wald test of 

H0:  = 1 is on p.31 – better yet, using the program near the 

bottom of p.32, likelihood –2LL test gives 1
2 = 14.3, p = 

0.0002.  Finally, since RP estimate is  ̂        , the interior 

ray corresponds to the effective fraction  ̂         
(Equation 6.19) on p.29. 



 Example 6.12.   Additional Binomial examples with one interior 

ray.  Hewlett and Plackett DDT and -BHC again.  Output 6.11a 
shows that log-dose and dose scales are wrong for these data – 
see Equations 6.13 and 6.14.  Stay on this new scale for these 

data.  Then, can accept equal slopes (2
2 = 0.8), but not 

independent action – synergy detected here too;  ̂  
      . 

 Example 6.13.  Shelton data: response variable here is a 
fraction, and transformed to Normality with the logit 
transformation – one interior ray here.  Cannot accept common 
slopes – see Full & Reduced F on p.35, so the Finney model will 
not fit these data.  Synergy detect here  ̂         and c = ¼ 

  ̂        , which may be too low.  See Equation 6.19 on 
p.29.  This example points out that we need a good estimate of 

 = relative potency before we choose the slope of the ray(s), c. 

 Example 6.9 continued.  Finney model even with the Poisson 
distribution doesn’t fit well – residual plot on p.36 looks 
possibly wavy.  Separate Ray model (with Poisson dist.) fits 
better – see p.37.  This dataset has 3 interior rays with slopes  
c = 10, 5, and 1.  Synergy is detected along each ray, and we 
accept a common combination index; test that it equals 1 is 

rejected (1
2 = 218.9, p < 0.0001).  Relative potency estimate is 

such that these interior rays correspond to the effective 
fractions f = 0.1588, 0.2741, and 0.6537. 

 Example 6.14.  Goldin cancer example – three interior rays with 
slopes c = 7.5, 1, and 1/7.5.  Graph on p.38.  Independent 
action along first ray, marginal synergy along the central ray, 
and strong synergy along gentle-sloped ray. Combination 
indices can be related to effective fractions as in plot on p.40. 


