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Class Notes for Chapter 7 
 
Class One: 

 Now we consider repeated measures (correlated) data 

 First: Linear mixed models methods (in Section 7.2): 
- multivariate approach (often too conservative) 
- split-plot approach (often not correct) 
- proc mixed approach (usually a good idea) 

Next: mixed linear and nonlinear models, hierarchical models.  
Finally: time series models 

 If four measurements are made on each person over time – denoted 
y1, y2, y3, y4, - these measurements are probably correlated.  Not 
really sure of the structure of this correlation without looking at the 
data: every dataset will differ.  Worse case setting is to have 10 
variance components (variance parameters) as in Equation 7.1; this is 
the multivariate approach or UN structure 

 CS (Compound Symmetry) structure is as in 7.2, and this is what the 
split plot design assumes.  CS has only 2 variance parameters.  HF 
structure in 7.3 has 5 variance parameters.  AR(1), called the first-
order autoregressive, structure in 7.4 has only 2 parameters.  TOEP 
structure in 7.5 has 4 parameters. 

 What does the independence/constant variance structure look like? 

 Which of these structures are nested in others (and in which)? 

 Appreciate the difference between the CS and AR(1) structures in 
terms of the covariances: between y1 and y2, between y1 and y3, and 
between y1 and y4. 

 Example 7.1. Rabbits. 4 measurements at times 0, 30, 60 and 90 
minutes.  Profiles (p.4) do not look the same.  GLM procedure used 
here at first.  Sphericity test (Output 7.1b) indicates HF structure is 
accepted for these data.  Regardless, Wilks (likelihood) test of 
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time*trt interaction is NS (p = 0.1134).  Can then look at time test: p 
= 0.0082 imply average profile is not flat over time.  Nonetheless, 
Output 7.1d indicates that the linear aspect of the time*trt profiles 
(i.e., the slopes) are not the same (p = 0.0247), but not the quadratic 
nor cubic (p = 0.6084 and 0.1842 resp.)  Bottom line: profiles differ in 
terms of slopes, but wait … 

 Rabbits.  Analysis of these data using the SP approach indicate 
significant time*trt interaction (p = 0.0207), but SP approach is only 
rarely appropriate 

 Rabbits. Both of the above are special cases of the MIXED approach 
(p.8), obtained by running this program and cycling through different 
choices for “type = ___” structures.  Nested structures can be tested 

against one another using –2LL test; otherwise, use AIC or BIC 
(lowest value).  Output 7.3 on p.9 corresponds to AR(1), indicates 
significant time*trt interaction (p = 0.0253).  Table on p.10 helps sort 

things out.  AIC indicates AR(1) is best; -2LL approach comparing 
AR(1) and INDEP (write down H0 and HA) give some pause for 
thought, but since interaction p-values are close, let’s use AR(1).  
How is it the case that the AR(1) structure “sees” a significant 
time*trt interaction here whereas UN (MULT) does not?  Conclusion: 
slopes are not the same, but need to follow up.  A better approach 
may be as used in the next example. 

 
Class Two: 

 Example 7.2. Intracellular Li+ accumulation in 3 types of cells. 4 
measurements at times 15, 30, 45 and 60 minutes.  Turns out (lots of 
trial and error!) that UN(1) in 7.6 is best here – clearly explain in 
words what this structure means.  Then, Output 7.4a gives intercept 
(7.36, 6.10, 1.81) and slope estimates (0.12, 0.09, 0.06) – uses the 
“noint” and “s” options.  Then, Output 7.4b is useful to help us test 
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for parallelism of the trt*time profiles.  Conclusion: we accept 
parallelism (no linear interaction). 

 Example 7.3. Physical Exercise. 4 measurements at days 2, 6, 10, and 
14 days.  AR(1) structure turns out to be best here.  Four time points 
means that we can fit cubic polynomials for each of the three 
treatments (12 total parms): these also correspond to intercept + 
(2df for the 3 treatments) + (3df for the 4 time points) + (6df = 2*3 
for the interaction).  Output 7.5a shows that the cubic terms are NS: 
this corresponds to the graph on p.13 too.  Quadratics in Equation 
(7.7) are fit in Output 7.5b (looks like quadratic term is only 
necessary for the “reps” program).  When we compare with Output 

7.5c, we appreciate the true statement of HA (at least one of the 2’s 
is not zero).  Curves are plotted with data on p.13.  For Rep’s 
program, taking the derivative of the fitted quadratic, setting to zero, 
and solving gives maximum strength at about 11 days.  It turns out 
that Control curve is essentially flat, and that Weight program keeps 
climbing over the range of these data. 

 In Section 7.3 (pp.15-28), we fit a population (linear or nonlinear) 
model, and then allow the individual subjects to deviate from it in a 
hierarchical manner by letting the parameters themselves vary. 

 So, we now have two levels of variability – variability around one’s 

curve (2) and individual variability in the parameters (with 
additional variances); often, we assume that the parameters have a 
Normal distribution, although this is hard to verify in practice. 

 Example 7.4 fits two population lines – one for each of two 
treatments – with individual variation in one’s intercept and slope, 
assumed to have the MVR Normal distribution on p.17 (top).  That 
makes 5 variance terms in total; another is added since the intercept 
variability appears to differ by treatment. 

 Full model on p.17 and Output 7.6a.  Wald test of whether the 
covariance term ‘var_01’ can be dropped says ‘yes’ but Likelihood 
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test says ‘no’.  Reduced model on p.18 bottom and Output 7.6b 
shows we can retain equal slopes.  Interpretation of Output 7.6c is 
key and on p.20. 

 
Class Three: 

 Example 7.5 fits the Normal Logistic (LOG3) model on p.21 top.  
Homoskedastic fit is way off (table at bottom of page and graph).  
Could model variances but that too is off (table) and doesn’t take 
account of repeated measurements.  As in last e.g., we model the 

upper asymptotes (1 s) as in Output 7.7b.  Can test this model (and 
modeled variance model) vs. homoskedastic one with –2LL’s since 
nested, but must compare last 2 models with AIC since neither is 
nested.  Winner is this hierarchical one.  Comparing Outputs 7.7a and 

7.7b, note the large reduction in the SE of the LD50 parameter (2). 

 Example 7.6 (PK of theophylline) – 12 subjects; fit population model 
function in Equation 7.12 reparameterized as in 7.14 … 7.15.  
Parameters have important interpretations: clearance, absorption, 
elimination, AUC, tmax, cmax. The twist here is distributions of one 
parameter is skewed, so we use the Log-Normal distribution as in 
Equations 7.16-7.18.  Key output in 7.8; retain the claim that 
‘var_uw’ = 0, so it is dropped in Output 7.8.  Interpretations on 
pp.27-8 are key! 

 Time Series Errors.  AR(1) structure is given in Equation 7.21: it 
relates the residual from one day to the residual from the previous 

day.  Rho () is between –1 and 1.  Time series analysis is more 
common in econometrics than other fields. 

 Example 7.7. 4000 plastic beads placed into a sheep, and counting 
how many remain in the sheep over time. The model function is on 
p.29: modified LL2.  Residual plot is also on p.29.  Notice the sine 
pattern – this demonstrates the AR(1) structure.  But, the non-
constant variance presents a big problem called nonstationarity. 
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 Example 7.8.  Atkinson gives PK/theophylline data for a single horse.  
When we fit the IP3 model in Equation 7.12, we get the residual plot 
on p.30.  Kind of see a sine pattern, but these data are not rich 
enough to fit the AR(1) error pattern, so we move on to: 

 Example 7.9.  Sredni gives chloride ion transport through blood cell 
walls data.  Measurements on the same unit (person?) over time, so 
they are probably correlated; measurements are taken every 0.1 
minutes (i.e., every 6 seconds).  We fit the LL3 model in Equation 

7.23: 1 is the UA,2 is the LA,3 is the LD50.  NLIN and Output 7.9a 
on p.31 ignores the problem; when we take the associated residuals 
and plot residuals versus the lagged-residuals, we get the plot at the 
top of p.32.  Think in terms of 

 

t = t-1 + at 
 

Since this plot shows a strong linear association, this encourages us 
to believe in this AR(1) structure for these data. 

 Equation 7.24 just gives the –2LL function for the independence 
model.  Output at bottom of p.32 is wrong – provided just for 
comparison with correct analysis. 

 Equation at top of p.33 is the correct –2LL function for AR(1) case – is 
slightly modified for the fact that the measurements are not taken at 
times with step size = 1.  Results given in Output 7.9c.  Profile 
Likelihood curve for   is given at the top of p.34 – does not look 
parabolic so Wald and Likelihood results will differ.  It hits its 
minimum at  ̂ = 0.0282681 (take from Output 7.9c). 

 Comparing the SE’s in Output 7.9c with those in 7.9b, notice the 
increase!  For LD50 – from 0.816012 to 1.604694.  This runs counter 
to Example 7.5 results above.  But, from our knowledge of the results 
for time series methods, it is not unexpected. 
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