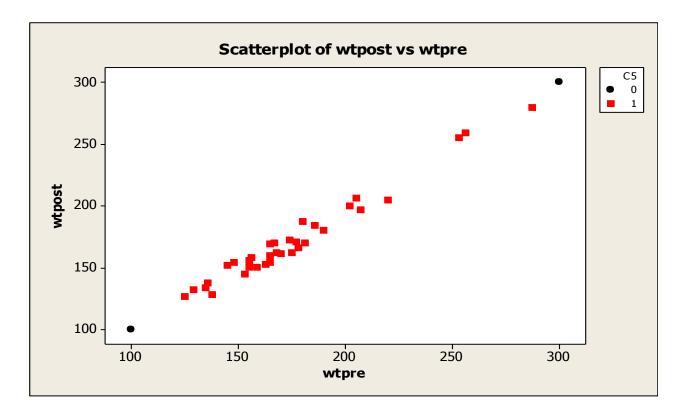
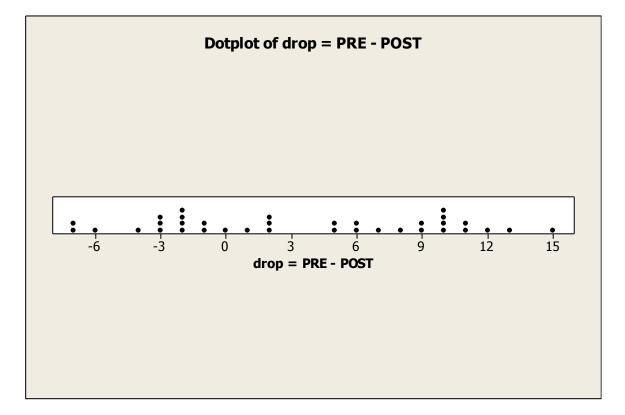
Homework 2


<u>Directions</u>: Answer the following two exercises, showing all relevant work. Conclusions and justifications are to be given in clear detailed English. For each exercise, clearly write down all needed assumptions/requirements. Type up your solutions or write <u>very</u> neatly.


- Extracorporeal membrane oxygenation (ECMO) is a potentially life-saving procedure that is used to treat newborn babies who suffer from severe respiratory failure. An experiment was conducted in which 20 babies were treated with ECMO and 30 babies were treated with conventional medical therapy (CMT). At the end of the study, 11 of the CMT babies died (19 survived), and only 2 of the ECMO babies died (18 survived).
 - (a) Test whether these data suggest that the therapies significantly differ. Also, test the one-tailed alternative that the ECMO procedure is better than (in terms of better survival rates) the conventional therapy.
 - (b) Find and interpret the Odds Ratio (OR) of survival comparing the ECMO therapy with the CMT, and provide a 95% confidence interval for the true OR. Hint: you must do this part by hand; see the Chapter 1 Notes.
 - (c) Let's now alter the above data by supposing that of the 20 ECMO babies, only one died (19 survived). Explain why the usual (chi-square) test statistic is inappropriate here, and analyze these "new" data using the correct statistical analysis. For this part, perform only the one-tailed test specified as the second test in part (a) of this exercise.
- 2. [Data taken from Walker, 2002:61] A drug company is developing a new appetite suppressing compound for use in weight reduction. A preliminary study of 35 obese patients provided the following data on patients' body weights (in pounds) before ("PreW", in pounds) and after ("PostW", in pounds) 10 weeks of treatment with the new compound. These data are graphed on the next page (red squares) with two additional points (black circles): one at the point (100,100) and one at the point (300,300); these latter two points are not a part of the data, but may be useful for part (c) of this exercise.

Sub	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PreW	165	202	256	155	135	175	180	174	136	168	207	155	220	163	159	253	138	287
PostW	160	200	259	156	134	162	187	172	138	162	197	155	205	153	150	255	128	280
Sub	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
PreW	177	181	148	167	190	165	155	153	205	186	178	129	125	165	156	170	145	
PostW	171	170	154	170	180	154	150	145	206	184	166	132	127	169	158	161	152	

- (a) Does the new treatment look at all promising? Be specific and list all necessary assumptions and/or reasons why some usual one(s) are not needed here.
- (b) Does a subjects' "Pre" weight appear to be a good linear predictor of his/her "Post" weight? Again, be specific and list all necessary assumptions and/or reasons why some usual assumption(s) are not needed here.
- (c) Reconcile the analyses in parts (a) and (b). That is, discuss any connection(s) (if any) between the two analyses.

Graphs for Exercise 2

<u>Output A</u>

Chi-Square Test: CMT, ECMO								
Expected	counts	are print	ted below	observed counts				
	ECMO	CMT	Total					
1	18	19	37					
	14.80	22.20						
2	2	11	13					
	5.20	7.80						
Total	20	30	50					
Chi-Sq =	0.692	+ 0.461	+					
	1.969	+ 1.313	= 4.435					
DF = 1, 1	P-Value	= 0.035						

<u>Output B</u>

Paired T-Test and CI: wtpre, wtpost Paired T for wtpre - wtpost StDev SE Mean N Mean 35.94 wtpre 35 174.94 6.07 171.49 35.45 5.99 wtpost 35 Difference 35 3.46 6.34 1.07 95% lower bound for mean difference: 1.65 T-Test of mean difference = 0 (vs > 0): T-Value = 3.23 P-Value = 0.001

<u>Output C</u>

Regression Analysis: wtpost versus wtpre											
The regression equation is wtpost = 1.61 + 0.971 wtpre											
Predictor	Coef	SE Coef	т	P							
Constant	1.615	5.407	0.30	0.767							
wtpre	0.97101	0.03030	32.05	0.000							
S = 6.348	R-Sq = 9	6.9% R-Sq	[(adj) = 2	96.8%							
Analysis of Variance											
Source	DF	SS	MS	F	P						
Regression	1	41397	41397	1027.31	0.000						
Residual Erro	or 33	1330	40								
Total	34	42727									
Unusual Obser	vations										
-	e wtpos		: SE	Fit Re	esidual	St Resid					
3 25	6 259.0	0 250.19) :	2.68	8.81	1.53	х				
18 28	37 280.0	0 280.29) :	3.56	-0.29	-0.06	х				
X denotes an observation whose X value gives it large influence.											