Homework 6

<u>Directions</u>: Answer all three exercises, showing all relevant work. As always, conclusions and justifications are to be given in clear detailed English. For each exercise and part, be sure to clearly write down all needed assumptions and requirements. Please type up your solutions or write <u>very</u> neatly.

- 1. [From Kuehl, p.326] A horticulturalist studied the germination of tomato seed with four different temperatures (25C, 30C, 35C and 40C) such that each "run" of the experiment included only two different temperatures because there were only two growth chambers available for the study. The two experimental temperatures were randomly assigned to the chambers for each run, but the researcher feels certain there may be run-to-run variability. The data that follow are germination rates of the tomato seed.
 - (a) It is claimed the design is an IBD. Explain why this is so. Is this IBD balanced? Thoroughly justify your answer and give the IBD "parameters" (see the 6 symbols defined in the box on p.13 of the Chapter 3 Course Notes). Pay particular attention to how you define the λ parameter here.
 - (b) Give all the needed assumptions and thoroughly analyze these data. Summarize your findings using the underline method for the treatments (25C, 30C, 35C and 40C), and comment on the model fit.

	25C	30C	35C	40C
Run 1	24.65			18.62
Run 2		24.11		17.08
Run 3	22.31	21.25		
Run 4			17.95	18.93
Run 5	28.90		18.27	
Run 6		25.53	20.91	

(c) What is the commonly used term for "runs" in this experiment?

- 2. Associative effects occur in animal diets when feedstuffs are combined and diet utilization or animal performance is different from that predicted from a sum of the individual ingredients. The addition of roughage to the diets of ruminant animals has been shown to influence various diet utilization factors such as ruminal retention time. However, information about the relative associative effects of different roughage was scarce, especially in mixed feedlot diets. An animal scientist hypothesized roughage source could influence utilization of mixed diets of beef steers by altering ruminal digestion of other diet ingredients. The basic mixed diet for the beef steers was a 65% concentrate based on steam flaked milo and 35% roughage. Three roughage treatments were used with
 - (A) 35% alfalfa hay as a control treatment
 - (B) 17.5% wheat straw and 17.5% alfalfa
 - (C) 17.5% cottonseed hulls and 17.5% alfalfa.

Twelve beef steers were available for the study. Each of the three roughage diets was fed to the steers in one of six possible sequences of the three diets:

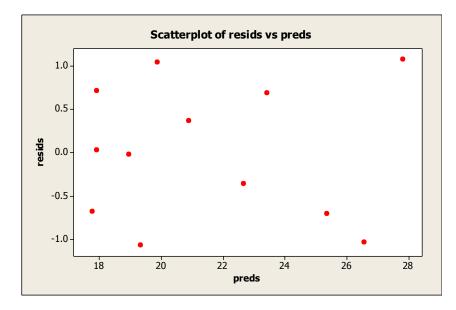
Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6
$A \rightarrow B \rightarrow C$	$B \rightarrow C \rightarrow A$	$C \rightarrow A \rightarrow B$	$A \rightarrow C \rightarrow B$	$B \rightarrow A \rightarrow C$	$C \rightarrow B \rightarrow A$

Each diet in each sequence was fed to two steers for 30 days. The steers were allowed a period of 21 days to adapt to a diet change before any data was collected. The Neutral Detergent Fiber (NDF) digestion coefficient, which indicates the percent of dietary fiber digested by the steer, was calculated for each steer on each diet. The raw data are given below (and analyzed in the attached), with each row corresponding to a different steer and the variables are sequence, treatment, NDF, treatment, NDF, treatment and NDF for each steer in each of the 3 periods.

Sequence	Treatment	Y	Treatment	Y	Treatment	Y
ABC	Α	50	В	61	С	53
ABC	Α	55	В	63	С	57
BCA	В	44	С	42	Α	57
BCA	В	51	С	46	Α	59
САВ	С	35	Α	55	В	47
САВ	C	41	Α	56	В	50
ACB	Α	54	С	48	В	51
ACB	Α	58	С	51	В	54
BAC	В	50	Α	57	С	51
BAC	В	55	Α	57	С	55
СВА	C	41	В	56	Α	58
CBA	C	46	В	58	Α	61

- (a) Using the correct test, test for a "sequence" effect, giving the test statistic, degrees of freedom, and clear conclusion.
- (b) Do you feel that there is a carryover effect here? Thoroughly justify your answer.
- (c) Do you feel the treatments differ? Summarize your findings using the underline method. Is it correct to use the "Means" here or the "LSMeans"? Why?
- (d) Comment on the fit here do all the needed assumptions appear to be met? Be clear and detailed.
- 3. Discuss the uses of blocking in biostatistical studies addressing the following:
 - (a) Why is it (blocking) used and useful?
 - (b) Why is it (blocking) not used more?
 - (c) In what sense (if any) is blocking used in CODs and split-plot designs?
 - (d) How is the analysis of a RCBD with one blocking and one treatment factor different from a two-way ANOVA with two treatment factors?

SAS Program for Exercise One


data tomato;							
do run=1 to 6;							
do rep=1 to 2;							
input y temp @@; drop rep;							
<pre>output; end; end; datalines;</pre>							
24.65 25 18.62 40 24.11 30 17.08 40 22.31 25 21.25 30							
17.95 35 18.93 40 28.90 25 18.27 35 25.53 30 20.91 35							
;							
proc glm;							
class run temp;							
model y=run temp;							
<pre>lsmeans temp/ pdiff;</pre>							
run;							

SAS Output for Exercise One

		The GLM Procedu	ıre		
Dependent Variable: y					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	8	139.5838000	17.4479750	7.85	0.0588
Error	3	6.6678250	2.2226083		
Corrected Total	11	146.2516250			

	R-Square	Coet	ff Var	Root	MSE	y Me	an		
	0.954409	6.9	920466	1.49	0841	21.542	250		
Source		DF	Туре І	SS	Mean S	quare	F	Value	Pr > F
run		5	35.1480	750	7.02	96150		3.16	0.1861
temp		3	104.4357	250	34.81	19083		15.66	0.0245
Source		DF	Type III	SS	Mean S	quare	F	Value	Pr > F
run		5	32.4003	083	6.48	00617		2.92	0.2038
temp		3	104.4357	250	34.81	19083		15.66	0.0245
		Lea	ast Square	s Mean	S				
	temp	У	LSMEAN	LSMEA	N Number	1			
	25	25.9	9725000		1				
	30	24.1	900000		2				
	35	17.4	4850000		3				
	40	18.5	5225000		4				
		Leas	st Squares	Means	for eff	ect temr	`		
			> t for						
			Depend	ent Va	riable:	у			
	i/j	1		2		3		4	
	1		0.3	177	0.0	107		0.0154	
	2	0.3177			0.0	205		0.0320	
	3	0.0107	0.0	205				0.5365	
	4	0.0154	0.0	320	0.5	365			

Residual Plot for Exercise One

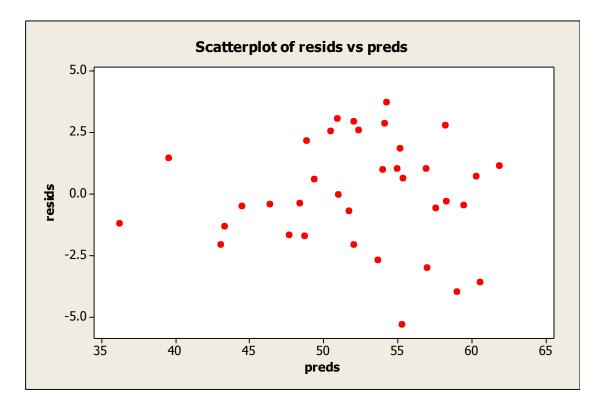

```
data one;
  do seq='abc','bca','cab','acb','bac','cba';
  do rep=1,2;
  do period=1,2,3;
   input trt $ y carry @@; carry2=carry*carry; output;
  end; end; end; datalines;
a 50 0 b 61 1 c 53 2 a 55 0 b 63 1 c 57 2
b 44 0 c 42 2 a 57 3 b 51 0 c 46 2 a 59 3
c 35 0 a 55 3 b 47 1 c 41 0 a 56 3 b 50 1
a 54 0 c 48 1 b 51 3 a 58 0 c 51 1 b 54 3
b 50 0 a 57 2 c 51 1 b 55 0 a 57 2 c 55 1
c 41 0 b 56 3 a 58 2 c 46 0 b 58 3 a 61 2
;
proc glm;
 class seq rep period trt carry;
  model y=seq rep(seq) period trt carry;
  test h=seq e=rep(seq)/etype=1 htype=1; run;
```

First SAS Output for Exercise Two

		The GLM Proced	lure		
	C	lass Level Inf	ormation		
	Class	Levels	Values		
	seq	6	abc acb bac bca	cab cba	
	rep	2	12		
	period	3	123		
	trt	3	abc		
	carry	4	0123		
	Number of	Observations	Read 36		
	Number of	Observations	Used 36		
Dependent Varia	ble: y				
Source	DF	Sum of Square	s Mean Square	e F Value	Pr > F
Model	17	1267.51388	9 74.55964	7.89	<.0001
Error	18	170.12500	9.45138)	
Corrected Total	. 35	1437.63888	9		
	R-Square Coe	ff Var Ro	ot MSE v M	lean	
	0.881664 5.	877600 3.	074311 52.30	0556	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
seq	5	318.4722222	63.6944444	6.74	0.0011
rep(seq)	6	111.8333333	18.6388889	1.97	0.1235
period	2	284.3888889	142.1944444	15.04	0.0001
trt	2	532.3888889	266.1944444	28.16	<.0001
carry	2	20.4305556	10.2152778	1.08	0.3603
Source	DF	Type III SS	Mean Square	F Value	Pr > F
seq	5	317.0916667	63.4183333	6.71	0.0011
rep(seq)	6	111.8333333	18.6388889	1.97	0.1235
period	1	0.3750000	0.3750000	0.04	0.8443
trt	2	425.4750000	212.7375000	22.51	<.0001
carry	2	20.4305556	10.2152778	1.08	0.3603
Tests of Hy	potheses Using the	Type I MS for	rep(seq) as an I	Error Term	
Source	DF	Type I SS		F Value	Pr > F
seq	5	318.4722222	63.6944444	3.42	0.0833

```
proc glm;
  class seq rep period trt;
  model y=seq rep(seq) period trt carry carry2;
  test h=seq e=rep(seq)/etype=1 htype=1;
  means trt/tukey;
  lsmeans trt/pdiff;
run;
```

Second SAS Output for Exercise Two


The GLM Procedure									
	CI	lass Level Info	rmation						
	Class	Levels Valu	es						
	seq	6 abc	acb bac bca cab	cba					
	rep	2 1 2							
	period	3 1 2 3	3						
	trt	3 ab	C						
	Number of	Observations R	ead 36						
	Number of	Observations U	sed 36						
		Sum of							
Source	DF	Squares	Mean Square	F Value	Pr > F				
Model	17	1267.513889	74 559641		<.0001				
Error	18	170.125000	9.451389						
Corrected Total	35	1437.638889							
	R-Square	Coeff Var	Root MSE	y Mean					
	0.881664	5.877600	3.074311	52.30556					
Source	DF	Type I SS	Mean Square	F Value	Pr > F				
seq	5	318.4722222	63.6944444	6.74	0.0011				
rep(seq)	6	111.8333333	18.6388889	1.97	0.1235				
period	2	284.3888889	142.1944444	15.04	0.0001				
trt	2	532.3888889	266.1944444	28.16	<.0001				
carry	1	0.3750000	0.3750000	0.04	0.8443				
carry2	1	20.0555556	20.0555556	2.12	0.1624				
Source	DF	Type III SS	Mean Square	F Value	Pr > F				
seq	5	317.0916667	63.4183333	6.71	0.0011				
rep(seq)	6	111.8333333	18.6388889	1.97	0.1235				
period	2	56.3922414	28.1961207	2.98	0.0760				
trt	2	425.4750000	212.7375000	22.51	<.0001				
carry	1	20.4294218	20.4294218	2.16	0.1588				
carry2	1	20.0555556	20.0555556	2.12	0.1624				
Tests of Hypot	heses Using the	• Type I MS for	rep(seq) as an	Error Term					
Source	DF	Type I SS	Mean Square	F Value	Pr > F				
seq	5	318.4722222	63.6944444	3.42	0.0833				

Tukey's Studentized Range (HSD) Test for y							
NOTE: This test controls the Type I experimentwise er	ror rate, but it generally has a higher						
Type II error rate t	than REGWQ.						
Alpha	0.05						
Error Degrees of Freedom	18						

Minimum Sig	Lue of Studen nificant Diffe	erence	9.451389 Range 3.60930 3.2032 hificantly different.	
Tukey Grouping	Mean	N	trt	
A	56.417	12	а	
A				
A	53.333	12	b	
В	47.167	12	C	

	Leas	st Squares M	leans			
			LSMEAN			
	trt	y LSMEAN	Number			
	a t	56.7430556	1			
	b t	52.8055556	2			
	C A	47.3680556	3			
	Least Squa	res Means fo	r effect t	rt		
	Pr > t fo	r HO: LSMean	(i)=LSMean	(j)		
	Deper	ndent Variab	le: y			
i/j		1	2	3		
1		0.	0117	<.0001		
2	0.01	17		0.0011		
3	<.00	01 0.	0011			
NOTE: To ensure overall protect comparisons should be us	-	only probab	ilities as	sociated	with pre-p	lanned

Residual Plot for Exercise Two

