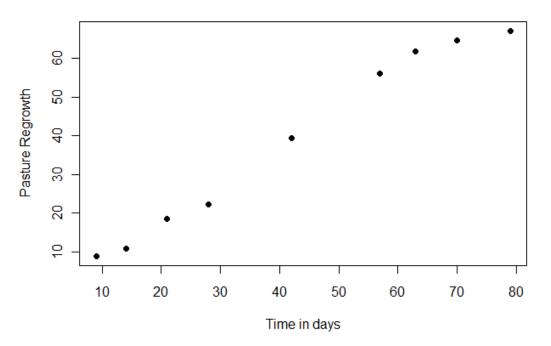
STAT436

Homework 9


<u>Directions</u>: Students are to answer both exercises below showing all relevant work. As always, conclusions and justifications are to be given in clear detailed English. Please type up your solutions or write very neatly.

- 1. Huet, Bouvier, et al (*Statistical Tools for Nonlinear Regression*, p.2) use the 'Pasture Regrowth' data from Ratkowsky (*Nonlinear Regression*, p.88) to fit a certain four-parameter sigmoidal growth model. In the dataset, Y = pasture regrowth (since last grazing), and X = time, and for our present purposes, we can assume that the data are independent measurements. The model function that these authors used to fit the data is rather complicated, and coming up with starting values for the model parameters is not easy, and can only come after we understand the roles they play.
- (a) List all the needed assumptions for the following **proc nlin** analysis. Give an example of conditions where the above required independent-measurements assumption would <u>**not**</u> be met.
- (b) After examining SAS Program B (proc nlin), write down the assumed 4-parameter model function that the researchers fit to the data see the right-hand side of the model statement.
- (c) Assuming that θ_4 is positive and using algebra and one 'limit', clearly list the roles of the parameters θ_1 and θ_2 . (Hint: Which parameters are the upper and lower asymptotes for this model?) Upon examining the graph of the data below, what are your "eyeball estimates" of these two parameters?
- (d) In order to obtain NLIN starting values for θ_3 and θ_4 , we use the following approach: write down the expression with 'y' on the left-hand side and the above assumed nonlinear model function on the right-hand side (with no error term for now), substitute in our eyeball estimates for the upper and lower asymptotes, and solve so that the new right-hand expression is a linear model in 'log(x)'. Next, relate what you have found to the simple linear regression (**proc reg**) performed in SAS Program A, and use SAS Output A to write down the starting values for θ_3 and θ_4 . Verify that these starting values (or approximations to these) are used in SAS Program B.
- (e) Using SAS Output B (**proc nlin**), report the estimate of σ^2 here.
- (f) Using SAS Output B (proc nlin), do a two-sided Wald test that $\theta_4 = 3$ using $\alpha = 1\%$. Redo this **Wald test** using $\alpha = 5\%$. Clearly report your conclusions in each case.
- (g) Repeat both of the tests done in part (f) but using *Likelihood Ratio tests* instead.
- (h) In examining the listing of the residuals in Output C and the Residual Plot, it is apparent that one of the residuals (at x = 21) may be 'large'. If the proc nlin were to be rerun with this potential outlier removed, would the estimate of the lower asymptote increase or decrease?
- 2. In Nonlinear Regression Analysis and its Applications (1988, p.269), Bates and Watts report data from Treloar (1974) regarding the "velocity" of an enzymatic reaction. The number of counts per minute of radioactive product from the reaction was measured as a function of substrate concentration (ppm), and from these counts the initial rate, or "velocity," of the reaction was calculated (counts/min²). The experiment was conducted once with the enzyme treated with puromycin (variable 'treat' = "yes") and once with the enzyme untreated ('treat' = "no"). The velocity is assumed to depend on the substrate concentration according to the Michaelis-Menton (MM₂) equation. In the word of the authors, **it has been hypothesized that the "ultimate velocity parameter"** (θ_1) should be affected by introduction of the Puromycin, but not necessarily the "half-velocity parameter" (θ_2).

- (a) Clearly list all the needed assumptions for the following **proc nlin** analyses *in the context of this situation/exercise*.
- (b) Write down the model function fit in SAS Program A and clearly indicate the roles of θ_3 and θ_4 here.
- (c) Give estimates for the MM_2 model parameters (upper asymptote and LD_{50}) for both the treated and untreated curves; report these in a 2x2 box.
- (d) Test both of the hypotheses indicated by the authors above highlighted claim using Wald hypothesis tests (one at a time). In both cases and using the model in SAS Program A, report the hypotheses, test statistics, degrees of freedom, p-values and conclusions. Approximate the p-values here as best you can and also in the next two parts.
- (e) Using the full-and-reduced (likelihood-based) F-test, test whether the half-velocity parameters are the same, reporting the calculated test statistic, degrees of freedom, p-value and your conclusion.
- (f) Using the full-and-reduced (likelihood-based) F-test and assuming the half-velocity parameters are indeed the same, test whether the ultimate velocity parameters are the same, reporting the calculated test statistic, degrees of freedom, p-value and your conclusion.
- (g) Finally, compare the model function in Program/Output A with that in Program/Output D are they equivalent? Why/why not? In what way are the approaches different? In which situation(s) is Program/Output A preferred, and in which situation(s) is Program/Output D preferred? Be clear in your explanation.

Homework 5a Appendix

Exercise 1 Graph

Ratkowsky's Pasture Regrowth Data

Exercise 1 SAS Program A

data one; do x=9,14,21,28,42,57,63,70,79; input y @@; y=y/100; output;

```
end; datalines;
893 1080 1859 2233 3935 5611 6173 6462 6708
;
data two;
set one;
ny=log(-log((70-y)/65)); nx=log(x);
proc reg data=two;
model ny=nx;
run;
```

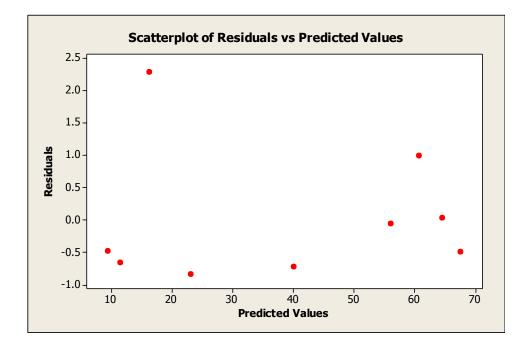
Exercise 1 SAS Output A

		The REG Proced	ure		
		Model: MODE			
	D	ependent Variab			
		•	-		
	Number of	Observations R	ead	9	
	Number of	Observations U	sed	9	
	Δna	Lysis of Varian	Ce		
	/	Sum of	Mea	n	
Source	DF	Squares			Pr > F
Model	1	16.87291	-		<.0001
Error	7	0.21439	0.0306	3	
Corrected Total	8	17.08730			
Boot	MSE	0.17501	R-Square	0.9875	
	endent Mean	-0.53872	Adj R-Sq		
-	f Var	-32.48571		010007	
		Parameter Esti	mataa		
	Pa		tandard		
Variable		stimate		Value Pr >	1+1
Intercept					001
nx					001

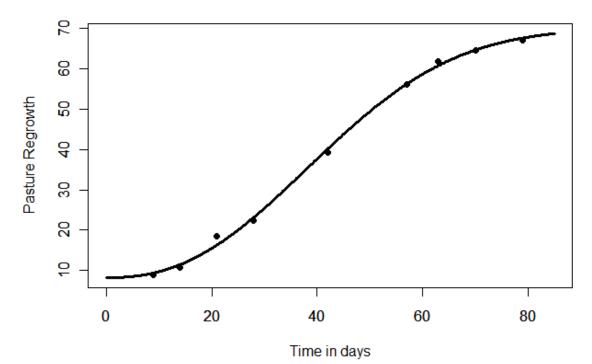
Exercise 1 SAS Program B

```
proc nlin data=one;
parms th1=70 th2=65 th3=-7 th4=2;
model y=th1-th2*exp(-exp(th3)*(x**th4));
output out=three r=resids p=preds;
run;
```

Exercise 1 SAS Output B


		The NLIN	Procedure			
		Dependent \	/ariable y			
		Method: Gau Iterative				
					Sum of	
Iter	th1	th2	th3	th4	Squares	

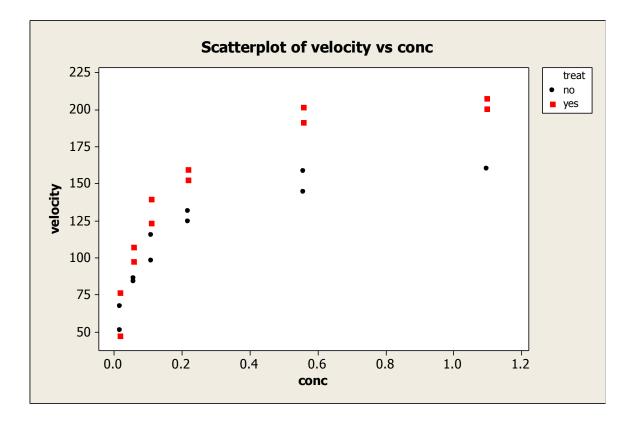
0	70.0000	65.0000	-7.0000	2.000	0 83	2.1	
1	68.9082	64.3067	-6.1978	1.571	2 27	6.5	
2	63.5647	52.7166	-9.3162	2.435	4 85.3	555	
3	69.8974	61.6943	-9.0989	2.344	0 9.7	022	
4	69.9211	61.6539	-9.2072	2.377	7 8.3	768	
5	69.9575	61.6846	-9.2082	2.377	6 8.3	759	
6	69.9552	61.6815	-9.2089	2.377	8 8.3	759	
7	69.9552	61.6815	-9.2089	2.377	8 8.3	759	
NOTE	Convergence c	riterion me	t.				
		Estimat	ion Summar	v			
	Metho			uss-Newton			
		tions		7			
	Obser	vations Rea	d	9			
	Obser	vations Use	d	9			
	Obser	vations Mis	sing	0			
		s	um of	Mean		Approx	
Source			uares		F Value	Pr > F	
Model			639.7	1546.6	923.22	<.0001	
Error			.3759	1.6752	010111		
Corrected	Total		648.1				
			Approx				
Par	rameter Es	timate S	td Error	Approxima	te 95% Con	fidence	Limits
th		9.9552	2.3620	63.8835	76.026		
th2	2 6	1.6815	3.1927	53.4744	69.888	5	
th	3 -	9.2089	0.8173	-11.3098	-7.108	0	
th4	ł	2.3778	0.2210	1.8098	2.945	9	
	Ann	oroximate Co	rrelation	Matrix			
	th1		th2	th3		th4	
th1	1.0000000	0.9251		0.7095438	-0.765		
th2	0.9251613	1.0000		0.8615146	-0.890		
th3	0.7095438	0.8615		1.0000000	-0.995		
th4	-0.7658736	-0.8906		0.9955752	1.000		
			-			'	


Exercise 1 SAS Program and Output C

proc	print	noobs;	
<pre>run;</pre>			

х	У	preds	resids	
9	8.93	9.4107	-0.48069	
14	10.80	11.4693	-0.66931	
21	18.59	16.3057	2.28432	
28	22.33	23.1737	-0.84374	
42	39.35	40.0846	-0.73458	
57	56.11	56.1766	-0.06655	
63	61.73	60.7442	0.98581	
70	64.62	64.5949	0.02506	
79	67.08	67.5803	-0.50032	

Exercise 1 Fitted Nonlinear Model and Data



Ratkowsky's Pasture Regrowth Data with Fitted Curve

```
proc nlin data=one;
    parms th1=70 th2=55 th3=-12; th4=3;
    model y=th1-th2*exp(-exp(th3)*(x**th4));
    run;
```

Exercise 1 SAS Output D

	The	NLIN Procedu	Jre		
	Deper	ndent Variabi	Le v		
	•	od: Gauss-Nev	-		
		native Dhee	_		
	170	erative Phase	9	0	
Then	1 h d	+	+ - 0	Sum of	
Iter	th1	th2	th3	Squares	
0	70.0000		-12.0000	112.9	
1	64.8344		-11.5162	28.9029	
2	66.7202		-11.5451	19.2408	
3	66.7573		-11.5467	19.2384	
4	66.7590		-11.5469	19.2384	
5	66.7592		-11.5469	19.2384	
NUTE: Conver	gence criterio	n met.			
	Est:	imation Summa	arv		
	Method		Gauss-Newto	n	
	Iterations			5	
	Observations	Read		9	
	Observations			9	
	Observations	Missing		0	
		Sum of	Mean		Approx
Source	DF	Squares	Square	F Value	Pr > F
Model	2	4628.8	2314.4	721.81	<.0001
Error	6	19.2384	3.2064		
Corrected Total	8	4648.1			
		Approx			
Parameter	Estimate	Std Error	Approxi	mate 95% Co	onfidence Limits
th1	66.7592	1.4695	63.163		
th2	56.0969	1.6005	52.180		
th3	-11.5469	0.0999	-11.791		
	Approximat	te Correlatio	on Matrix		
	th1		th2	th3	
th1	1.0000000	0.756		0.7648290	
th2	0.7565905	1.000		0.3861020	
th3	-0.7648290	-0.386		1.0000000	

conc	treat	dummy	dumyes	dumno	velocity	
0.02	no	0	0	1	67	
0.02	no	0	0	1	51	
0.06	no	0	0	1	84	
0.06	no	0	0	1	86	
0.11	no	0	0	1	98	
0.11	no	0	0	1	115	
0.22	no	0	0	1	131	
0.22	no	0	0	1	124	
0.56	no	0	0	1	144	
0.56	no	0	0	1	158	
1.10	no	0	0	1	160	
0.02	yes	1	1	0	76	
0.02	yes	1	1	0	47	
0.06	yes	1	1	0	97	
0.06	yes	1	1	0	107	
0.11	yes	1	1	0	123	
0.11	yes	1	1	0	139	
0.22	yes	1	1	0	159	
0.22	yes	1	1	0	152	
0.56	yes	1	1	0	191	
0.56	yes	1	1	0	201	
1.10	yes	1	1	0	207	
1.10	yes	1	1	0	200	

```
proc nlin data=one;
parms th1=150 th2=0.10 th3=0 th4=0;
model velocity=((th1+th3*dummy)*conc)/(th2+th4*dummy+conc);
run;
```

		The N	LIN Proc	edure			
	De			velocity			
		-	: Gauss-	-			
		Iter	ative Ph	ase			
						Sum	of
Iter	th1	th2		th3	th4	Squa	res
0	150.0	0.1000		0	0	4543	3.4
1	158.5	0.0239	53.	5635	0.0151	8794	4.1
2	155.1	0.0376	53.	7329	0.0182	2379	9.9
3	158.9	0.0453	53.	0719	0.0175	206	6.1
4	160.0	0.0473	52.	5673	0.0167	205	5.3
5	160.2	0.0476	52.	4332	0.0165	205	5.1
6	160.3	0.0477	52.	4085	0.0164	205	5.1
7	160.3	0.0477	52.	4044	0.0164	205	5.1
8	160.3	0.0477	52.	4038	0.0164	205	5.1
NOTE:	Convergence cr	riterion	met.				
		Estim	ation Su	mmary			
	Method	l		Gauss-Ne	wton		
	Iterat	ions			8		
	Observ	ations R	ead		23		
	Observ	ations U	sed		23		
	Observ	ations M	issing		0		
			•				
	NOTE: An inter	cept was	not spe	cified for	this mod	lel.	
		•	•				
			Sum of	Mea	n		Approx
Source		DF	Squares	Squar	e FVa	lue	Pr > F
Model		4	417562	10439	0 965	5.14	<.0001
Error		19	2055.1	108.	2		
Uncorrected	i Total	23	419617				
		Appro	x				
Parameter	Estimate	Std Er		oproximate	95% Conf	idence	Limits
th1	160.3	6.8		145.8	174.7		
th2	0.0477	0.00		0.0304	0.0650		
th3	52.4038	9.5		32.4135	72.3942		
th4	0.0164	0.0		0.00751	0.0403		
	τααΑ	roximate	Correlat	ion Matrix			
	th1		th2		th3		th4
th1	1.0000000	0.77	68268	-0.7220		-0.562	
th2	0.7768268		00000	-0.5608		-0.724	
th3	-0.7220184	-0.56		1.0000		0.771	
th4	-0.5628691	-0.72		0.7712		1.000	
		•··· E					

```
proc nlin data=one;
parms th1=150 th2=0.10 th3=0; th4=0;
model velocity=((th1+th3*dummy)*conc)/(th2+th4+conc);
run;
```

		т	he NLIN I	Proc	edure		
					e velocity		
		•	ethod: Ga		•		
			Iterativ	/e Pł	nase		
						Sum of	
I	ter	th1	t	th2	th3	Squares	
	0	150.0	0.10	000	0	45433.4	
	1	161.6	0.03	321	47.9824	9612.9	
	2	162.3	0.04	182	41.2622	2595.2	
	3	165.7	0.05	561	41.6938	2251.4	
	4	166.5	0.05	577	41.9696	2241.1	
	5	166.6	0.05	579	42.0189	2240.9	
	6	166.6	0.05	580	42.0251	2240.9	
	7	166.6	0.05	580	42.0259	2240.9	
	8	166.6	0.05	580	42.0260	2240.9	
NOTE: C	onverge	nce crite	rion met.	•			
			Fotimotic				
		Method	Estimatio	50 50	Gauss-New	ton	
		Iteration	e		Gauss-New	8	
		Observati	-			23	
		Observati				23	
		Observati		ina		0	
						•	
N	OTE: An	intercep	t was not	t spe	ecified for	this model.	
			Sun	n of	Mear		Approx
Source		DF			Square		Pr > F
Model		3	-	7376	139125		<.0001
Error		20		40.9	112.0		10001
Uncorrected	Total	23		9617		·	
	locur	20					
			Approx				
Parameter	Esti	mate S [.]	td Error		Approximate	95% Confidence	Limits
th1	1	66.6	5.8074		154.5	178.7	
th2	0.	0580	0.00591		0.0456	0.0703	
th3	42.	0260	6.2721		28.9426	55.1093	
		Annovi	moto Co		ion Notais		
				ета	ion Matrix	±60	
-	b 1		h1 00	0 6-	th2	th3	
	h1	1.00000			12817	-0.5405580	
	h2	0.61128			00000	0.0644066	
τ	h3	-0.54055	00	0.00	644066	1.0000000	

```
proc nlin data=one;
parms th1=150 th2=0.10; th3=0;
model velocity=((th1+th3*dummy)*conc)/(th2+conc);
run;
```

		The NI	IN Proce	edure			
	De	pendent	Variable	e velo	city		
		Method	d: Gauss	Newto	n		
		Itera	ative Pha	ase			
					Sum	of	
	Iter	th	1	th2	Squa	res	
	0	150.0) 0	1000	4543	3.4	
	1	190.7	7 0.	0398	1145	4.1	
	2	187.5	5 0.	0536	742	4.5	
	3	190.1	1 0.	0591	728	0.7	
	4	190.7	7 0.	0602	727	6.6	
	5	190.8	з О,	0604	727	6.5	
	6	190.8	3 0,	0604	727	6.5	
	7	190.8	з о,	0604	727	6.5	
NOTE: Co	nvergence cr	iterion	met.				
			Sum of	F	Mean		Approx
Source		DF	Squares	3	Square	F Value	Pr > F
Model		2	412340)	206170	595.00	<.0001
Error		21	7276.5	5	346.5		
Uncorrected '	Total	23	419617	7			
					Appro	x	
Parameter	Estimate	Std B	Error	Appro		5% Confidenc	e Limits
th1	190.8	8.	.7646	17	2.6	209.0	
th2	0.0604	0	.0108	0.0	380	0.0828	
	Appro	oximate	Correlat	tion M	atrix		
			th1		th2		
	th1	1.00	00000	0	.7757154		
	th2	0.77	757154	1	.0000000		

Exercise 2 SAS Program and Output D (after introducing TWO dummy variables in the dataset for puromycin YES called 'dumyes' and for puromycin NO called 'dumno')

```
proc nlin data=one;
parms thlyes=150 thlno=150 th2yes=0.10 th2no=0.10;
th1=th1yes*dumyes+th1no*dumno;
th2=th2yes*dumyes+th2no*dumno;
model velocity=(th1*conc)/(th2+conc);
run;
```

		The M	NLIN Proce	dure		
	Dep	pendent	t Variable	velocity		
		Metho	od: Gauss-	Newton		
		Iter	rative Pha	se		
					Sun	n of
Iter	th1yes	th1r	no th	2yes th2	no Squa	ares
0	150.0	150.	.0 0.	1000 0.10	000 4543	33.4
1	212.0	158.	.5 0.0	0.02	39 879	94.1
2	208.8	155.	.1 0.0	0.03	76 237	79.9
3	212.0	158.	.9 0.0	0.04	53 206	6.1
4	212.6	160.	.0 0.0	0.04 0.04	73 205	55.3
5	212.7	160.	.2 0.0	0.04 0.04	76 205	55.1
6	212.7	160.	.3 0.0	0.04 0.04	77 205	55.1
7	212.7	160.	.3 0.0	0.04 0.04	77 205	55.1
8	212.7	160.	.3 0.0	0.04 0.04	77 205	55.1
NOTE: Co	nvergence crit	terion	met.			
		Esti	imation Su	mmary		
	Method			Gauss-Newton		
	Iteratio	ons		8		
	Observat	tions F	Read	23		
	Observat	tions l	Jsed	23		
	Observat	tions N	lissing	0		
NOTE:	An intercept	was no	ot specifi	ed for this mo	del.	
			Sum of	Mean		Approx
Source		DF	Squares	Square	F Value	Pr > F
Model		4	417562	104390	965.14	<.0001
Error		19	2055.1	108.2		
Uncorrected	Total	23	419617			
				Approx	ζ.	
Parameter	Estimate	Sto	d Error	Approximate 9		nce Limits
th1yes	212.7		6.6081	198.9	226.5	
th1no	160.3		6.8960	145.8	174.7	
th2yes	0.0641	C	0.00788	0.0476	0.0806	
th2no	0.0477		0.00828	0.0304	0.0650	
	Ap	oproxin	nate Corre	lation Matrix		
		-	th1no	th2ye	s	th2no
	th1yes			-		
th1yes	tniyes 1.0000000	C	0.000000	0.765083	57 U.U	000000
th1yes th1no			0.000000 1.0000000	0.765083 0.000000		768268
-	1.0000000	1			0.7	