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Chapter 1: Introduction and Background

1.1 Introduction

Predicated upon the requirement of repeatability, the scientific process —in which theories are
proposed, tested, updated and retested — often yields huge amounts of data, and statistical methods
have been created and continue to be created to turn these data into useful conclusions and decisions,
and subsequently into policy. As such, statistical techniques help decide which differences are
real/significant and which are simply due to random variability. Unfortunately, statistics is a field in
which statistical techniques can very easily be mis-applied often with little or no indication of such an
error. Further, the dogma or core of statistical methodology knowledge is constantly evolving, ever
pressing the practicing statistician to “stay current”. Throughout this book we stress the proper
matching of the appropriate tool (i.e., the statistical technique) with the given dataset, structure, and/or
situation.

In this chapter, we review basic statistical methods covered in an introductory course in statistical
methods. Topics covered in such course and reviewed here include the following: summary measures of
data, basic probability results (including the binomial and normal distributions), fundamentals of
sampling including the central limit theorem, one- and two-sample estimation (point estimates and
confidence intervals) and hypothesis testing (for means and proportions and differences of means and
of proportions), methods for categorical data analysis, one-way analysis of variance (ANOVA) including
various multiple comparison procedures including Fisher’s LSD, Tukey’s HSD, Newman-Keuls and
Bonferroni methods, and linear correlation and simple linear regression.

1.2 Random Variables and Sampling Theory

A random variable is a function resulting from a random process such as the tossing of a coin or the
taking of a random sample from a given population. We denote random variables by symbols such as X,
Y or Z; outcomes of these processes are denoted by the lower-case letters x, y or z. For most practical
purposes, random variables can be thought of as either quantitative or qualitative. Additionally,
guantitative random variables are further divided into either discrete or continuous variables;
qualitative random variables are further divided into either nominal or ordinal variables. Examples of
random variables are:
(a) the number of head’s obtained in tossing a coin 20 times or the number of tosses required to
observe the first head (discrete);
(b) a person’s exact age or weight (without rounding off; continuous);
(c) afriend’s hair color or blood group (nominal);
(d) a patient’s pain relief self-assessment after taking a drug when chosen from the list: complete,
substantial, some, and none (ordinal).

Some random variables have certain key known distributions. Examples of discrete distributions include
e the binomial (e.g. the number of head’s observed in 20 tosses of a fair coin)
e the Poisson (e.g., the number of fish caught from Skaneateles Lake in a given year)
e the discrete uniform (e.g., the number of dots appearing on the face of a die after a single toss
of the die)
e the geometric (e.g., the number of tosses of a coin needed until the first head is observed).



IMASB © T.E. O’Brien — January/2011 version

Examples of continuous distributions include

e the normal (sometimes called the Gaussian)

e the XZ (chi-square)

o thet

e theF

e the continuous uniform.
Some of these continuous distributions are the (null) distribution of a given test statistic, and may be
first encountered when performing hypothesis tests. As a result, most basic statistics textbooks contain
probability tables for some of these distributions. To illustrate, in testing for the equality of two normal
population means when the variances are assumed to be equal, the two-sample test statistic has the t-
distribution when the null hypothesis of equal means is true; as a result, cumulative t probabilities or
guantiles are given in most statistics textbooks.

Many distributions have associated probability mass functions (for discrete) or probability density
functions (for continuous). For example, for the binomial distribution with n independent trials and with
success probability w, fory =0, 1, 2, ... n, the probability mass function is

P(Y = y) = PO) = (5) w2 (1 = m)"
Other probability functions can be found in a textbook on basic probability theory such as Wackerly,
Mendenhall, & Scheaffer (2008). Random variables also have associated moments; the first moment is
the mean (denoted 1) and the second centralized moment is the variance (denoted ). Using “E( )” to
denote the mathematical expected value, the respective formulas for the mean and variance are
1 = E(Y) and 6® = VAR(Y) = E[(Y - pn)*]. Expected values usually involve summations or integration, and
when the result is infinite, we say that the corresponding moment does not exist. For the binomial
distribution, the general formulas simplify giving L = nt and o’ = n(1-m). It is emphasized, however,
that for other distributions these formulas do not hold, and in these cases, the first and second
moments are found using the general definitions.

In a population of size N, a random sample of size n (n < N) implies that the probability associated with
selecting any set of n population elements is the same, and is the same as the probability of selecting
any other set of n element. If a random sample of size n is chosen from a known probability
distribution, the field of sampling theory is concerned with characterizing and understanding what to
expect for the distribution of a (derived) statistic such as the sample proportion (denoted p) or the
sample mean (denoted ). The Central Limit Theorem demonstrates that as long as the sample size is
large enough, these sampling distributions will be approximately bell-shaped (i.e., normal in shape) even
when the underlying population distribution is not normally distributed. Regardless of the sample size

and the shape of the underlying population distribution, for a continuous random variable Y with mean
— - 2 —

i and variance o2, it is the case that E(Y) = pand VAR(Y) = % This implies that the distribution of Y is

also centered at 1, and that the variability in the Y distribution can be decreased by choosing a large

enough sample size.

1.3 Statistical Methods for a Single Sample

It is important to point out that sampling theory discussed in the previous paragraph is largely useful
only in a theoretical sense: the practitioner rarely knows the underlying parent population or the
associated population parameters. Rather, it is more common to have some data from a random
sample and one wishes to use that data to estimate one or several population parameters. This can be
achieved by using either a point estimate or an interval (or region) estimate and/or by using a statistical
hypothesis test regarding the parameter(s). Indeed, a large part of statistical methodology is concerned
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with both estimation and hypothesis testing. It's important to point out that the process of moving
from a known population to a single sample (sampling theory) involves deductive logic and is inherent in
the field of mathematics; the field of statistics, on the other hand, uses inductive reasoning to generalize
from one’s data to the larger population using inference.

To illustrate estimation and testing methods, consider taking a random sample from a population and
recording a quantitative random variable. We can set a confidence interval for the true mean (u) by
using the usual t-distribution; similarly we can test whether this unknown population mean is equal to a

Y—Ho

s/\n’
where y and s are the observed sample mean and standard deviation. When the underlying parent
population is normally distributed or when the sample size is sufficiently large, we use the t distribution
with n-1 degrees of freedom to perform the hypothesis test. An important application of these methods
involves the paired t-test — such as is useful for a “before-and-after” study or for a “twins study” — for
example in which one sibling gets drug A and the other gets drug B. In this case, we work with the

differences of the quantitative measurements, finding the average (d) and standard deviation (sq) of
d

sa/Vn’
involves the binomial setup, where we are sometimes interested in setting a confidence interval for the

unknown success probability (w). Instead of using the usual estimator, p = %, for finding a 95%

specific number (L) again using the same t- test statistic. This test statistic has the form t =

these differences, and using the analogous test statistic t = A third illustration for a single sample

confidence interval, it is frequently preferred to use the alternate estimator

. y+2

p= n+4
Heeding the discussion on p.208 in Samuels & Witmer (2003), we call p the Wilson estimator of r;
reasons for preferring p to p include it’s superior performance in simulation studies. As such, the 95%

confidence interval is calculated via the formula p + 1.96 ’ﬁ;l;f), the value 1.96 being the quantile

from the standard normal distribution (z) such that the area under the normal probability distribution
function between -1.96 and +1.96 is indeed 95%. Since the area under normal curve below 1.96 is
therefore 0.975, we write zp475 = 1.96. Note that this quantile can also be obtained using the R software
package using the R command gnorm(0.975).

1.4 Statistical Methods for Two or More Independent Samples

Extensions of the above one-sample methods to two independently sampled groups for continuous
random variables are straightforward both in terms of confidence intervals and hypothesis testing.
Interestingly, these methods apply both when we sample from two independent groups such as from
male and female students at a given university, and when the two groups are created by randomization
such as when volunteers are randomized to receive either Drug A or Drug B. We can better appreciate
the term ‘independent’ in this context: in the first setting, the selection of the n; males in no way
influences the selection of the n, females; in the second setting, the n = n; + n, randomly chosen
volunteers are assigned to either Drug A or Drug B in an independent manner, such as can be thought of
as the outcome of a coin toss.

With u; and i, representing the population means for the two groups, the relevant hypothesis test is
whether the population means are equal (viz, Ho: |1 = W, or equivalently, p; - g, = 0). This latter manner
of writing this null hypothesis underscores that a related conclusion can be made using a confidence
interval for y, - W,, and noting whether the derived interval contains the value zero. For the hypothesis
test, provided one samples from normal populations or if the two samples sizes are sufficiently large,
the test statistic can be written as
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SE371—372
In this expression, ¥; and s; are the sample mean and standard deviation for the first group, whereas y,

and s, are those for the second group. Further, if we assume the population variances are equal (i.e.,

2_ __2_ 2 _ [sp% | sp? _ 1
0, =0 =0 Say), then SE371_372 = + - = SP\/TL1+

1. . .
- —; if we assume that the population variance
1

ny’
are unequal, then SE; _5, = f% + % In the former (equal-variance) case, sp? = (n1—11)1511+2 22(722—1)522
is the so-called pooled estimator of o2, and the t statistic has (ny + n, —2) degrees of freedom; in the
latter (unequal-variance) case, the exact number of degrees of freedom is not exactly known, and most
software packages use some form of approximation such as Welch’s approximation for the degrees of
freedom. Additional details about this approximation (and the related Behrens-Fisher problem) may be
found in the References and elsewhere. Further, an interesting connection between the equal-variance
two-sample t-test and simple linear regression techniques is given in §2.5.

In the sense of robustness of results, it is probably preferred to place no assumptions regarding equality
of the variances, but we hasten to add that analysis-of-variance (ANOVA) methods discussed below in
§1.7 are predicated upon the requirement of equal variances. To illustrate one-way ANOVA, suppose
that a random sample of n patients are randomized to receive one of three anti-hypertensive drugs (A,
B, and C), such that n; patients receive drug A, n, patients receive drug B, and n; patients receive drug C
(thus n = ny + n, + n3); the balanced setting of n; = n, = n3 = n/3 is not required. The relevant null
hypothesis to be tested is whether the three treatment means are equal (i.e., Ho: 11 = 1 = 1s). In §1.7
below we discuss the relevant (F) test statistic, and in §3.6.2 we provide an extension to the unequal
variance case using (approximate) likelihood methods.

1.5 Statistical Methods for Categorical (Count) Data

Categorical count data are usually — although not always — analyzed using so-called chi-square methods.
Further, it can be shown that the square of a standard normal random variable has a chi-square
distribution with one degree of freedom (denoted %), so it is not surprising that 2-by-2 (denoted 2x2)
contingency tables can be analyzed using both chi-square and normal methods. It’s also important to
distinguish between two topics considered in introductory statistical methods: the analysis of count data
given in a contingency table and goodness of fit tests (denoted GOF); both settings use chi-square test
statistics, but important differences exist.

We use goodness of fit tests, for example, to test a genetic theory that progeny occur in the anticipated
12:3:1 ratio anticipated from the genetic theory and underlying Punnett square. For GOF tests, the null
hypothesis is specified by the underlying theory (or by common sense), and the alternative is looking for

departures from this theory or something out of the ordinary. In the 12:3:1 genetic theory case, the

12 3 1

relevant null hypothesis is then Hy: m; = o2 = 1o and 3 = e Since this hypothesis gives specified

values for several parameters, it is called a ‘compound’ hypothesis. Should we be interested in testing
. N . 1
whether an ordinary die is fair, the null hypothesis is Hy: 1y =, = - 15 = - The number of degrees

of freedom (df) for the derived %’ test is one less than the number of categories, so for the genetics
illustration, df = 2, and for the die example, df = 5.

Contingency tables, on the other hand, have two dimensions (and sometimes more) —i.e., one for the r
rows and one for the k columns — and the cells contain count data. The simplest case is a 2x2
contingency table, so that both the row and the column variables have two levels. In cause-and-effect
situations, following the methods presented in Agresti (2007), we think of the row factor as influencing

4
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or causing the column factor; as such, this setting is analogous to linear regression discussed below in
the next section. Note, however, that contingency tables and chi-square tests can also be used to simply
detect an association between two variables (analogous to detecting linear correlation). Regardless of
the setting, df = (r-1)x(k-1), so for a 2x2 contingency table, the associated chi-square test statistic has

one degree of freedom (denoted y,°).

As an example of a 2x2 contingency table, consider the following table corresponding to whether

© T.E. O’Brien — January/2011 version

mothers smoked during pregnancy and the child’s birth-weight.

Birth Weight Total
Low Normal
Smoking Status Smoker 237 3489 3726
during Pregnancy Non-smoker 197 5870 6067
Total 434 9359 9793
Note that this table is of the (general) form
Factor Y Total
Level Y1 Level Y2
Factor X Level X1 Ny Ny Nq*
Level X2 Ny Ny Ny«
Total N+, N« n

The usual chi-square test assesses for an association between factors X and Y. As for goodness-of-fit

(Ok—Ep)*

tests, the test statistic has the form y>= Y. -
k

expected cell counts, and the summation is over each of the cells (for contingency tables) or categories

(for goodness of fit tests).

For the smoking data, the following Minitab is obtained.

, with O, and E representing the observed and

Chi-Square Test: LowBW, NormBW

165.13 3560.87
31.284 1.451

268.87 5798.13
19.213 0.891

Chi-Sq = 52.838, DF

LowBW NormBW Total
Smokers 237 3489 3726

Nonsmokers 197 5870 6067

Total 434 9359 9793

1, P-Value = 0.000

Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts
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In the output, for each of the four cells, the output provides the observed counts (top), the expected
counts (middle), and the contribution to the chi-square test statistic (bottom). The reported chi-square
statistic, X12 =52.838, is highly significant, so we conclude there is an association between smoking and
low birth-weight.

The above results notwithstanding, we are often interested in more than simply noting such an
association. In the context of this example, let ; denote the probability of a low birth-weight baby for
the smokers, and 7, denote the probability of a low birth-weight baby for the non-smokers. Then
sometimes we want to set a Cl for (m, — m,). The methodology to do so is straightforward and readers
are referred to an introductory text such as on p.439 of Samuels and Witmer (2003).

Here, we instead consider the relative risk, p = % and the odds ratio, 0= % Note that — |s the
2 T2 —T>
odds of an event. For the above smoking data, the relative risk estimate is p = gg;iigz =1.9589 since
p1= =0.063607 and p, = =0.032471. Also, the estimate of the odds ratio is § = MaXNzz
3726 Nyp XNy
% =2.0240. The relat|ve r|sk and odds ratio will both be nearly equal — as is the case here — when

- . . . 1- .
both probabilities are either very small or very large; this follows since 8 = p X 1—22 To interpret the
—It

estimated relative risk in the context of this setting, we say that these data suggest that the risk of
having a low birth-weight baby for smokers is 1.9589 (approximately 2) times the risk of having a low
birth-weight baby for nonsmokers.

Although the above methods provide us with point estimates for the relative risks and odds ratios, we
are usually more interested in confidence intervals since this interval could then be used to test for a
significant difference between the two groups. One method for doing so is based on a modified Wald
approach; details and examples are given in Agresti (2007), and are illustrated here for the odds ratio.
For the odds ratio, the relevant scale is the natural log scale, and in what follows, “log” stands for the
natural (i.e., base e) logarithm; on some calculators, this is denoted “In”, short for “logarithm neperian”.
To obtain the 95% confidence interval for 0 for the above data, we follow these steps:

1. log(f) = log(2.0240) = 0.7051 (again note that we use log-base-e not log-base-10)

2. SE_ 5\ = |—+—+—+—= | —+-—+_——+_—=00988
og(B) Niy1 Mz N1 Nay 237 197 3489 5870

3. the modified Wald 95% confidence interval for log(6) is 0.7051 + 1.96*0.0988 = (0.5115, 0.8987)

4. the modified Wald 95% confidence interval for 0 is thus (e>*'**, €2%%) = (1.67, 2.46).
Notice that this interval does not include the value one, thereby implying inequality of the odds for the
two groups; also, the entire interval lies above one implying an increase in odds for the smoking group.
Further, to interpret this confidence interval: with 95% confidence, these data suggest that the odds of
having a low birth-weight child for the smoking mothers is at least 1.67 times and at most 2.46 times the

odds of having a low birth-weight child for the non-smoking mothers.

Note that the chi-square methods given above are only valid for large samples, that is, ‘asymptotically’.
For small samples, Fisher’s Exact Test (FET) can be used. We suggest that the FET be used in place of the
XZ test whenever at least 20% of the expected cell frequencies are below 5. For a 2x2 contingency table,
this means that the FET should be used whenever at least one of the expected cell frequencies is less
than 5. To illustrate, suppose that in the above example, it was desired to show that the risk of having a
low birth-weight child was higher in the smoking group but that the data instead was as in the following
(modified) table.
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Low BW Normal Total

Smoker 6 34 40
Non-smoker 1 59 60
Total 7 93 100

In this case, the following Minitab output identifies the problem — that two of the cells have expected
cell frequencies below 5 — and thus that the chi-square results are invalid. It is important to point out

that the observed value of 6 (and that 6 > 5) is not relevant — it is the expected cell count of% =2.38

(and 2.8 < 5) which is important in the assessment of the appropriateness of the Xz test.

Chi-Square Test: Low_BW, Norm_BW

Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts

Low BW Norm BW Total

1 6 34 40
2.80 37.20
3.657 0.275

2 1 59 60
4.20 55.80
2.438 0.184

Total 7 93 100

Chi-Sq = 6.554, DF = 1, P-Value = 0.010
2 cells with expected counts less than 5.

The Fisher Exact Test fixes the row and column totals and uses the hypergeometric distribution.
40\_ (60
( 6 )X( 1 )
—(100)
7
using the following command in R: (choose (40, 6)*choose(60,1))/choose(100,7). Butin

calculating the p-value for this one-sided alternative, note that with the row and column totals fixed, the
following table is ‘more extreme’ (i.e., in the direction of the alternative) that the original table:

Calculating the p-value for the above table, one obtains p = = 0.0144; this result is obtained

Low BW Normal Total

Smoker 7 33 40
Non-smoker 0 60 60
Total 7 93 100

Since no other tables can be constructed as being “more extreme than” the original table, the p-value
associated with the test is the sum of the p-values associated with these two tables; thus using R:
p = (choose(40,6)*choose(60,1))/choose(100,7)+
(choose (40, 7)*choose(60,0))/choose(100,7)=0.0156.
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At the 5% significance level, since p < o, our conclusion is that these data suggest that a woman'’s
smoking during pregnancy is associated with a higher incidence of having a low birth-weight baby.

To illustrate chi-square methods with a table larger than the above 2x2 contingency tables, consider the
blood group — gastric ulcer data given in Aird et al (1954) reproduced below.

Blood Group:
Ulcer Status: A B AB (o] Total
Control 4219 890 313 4578 10,000
Gastric Ulcer 79 16 4 127 226

Here, ABO blood group and gastric ulcer status were measured on 10,226 women in London to see if
there was an association between ABO blood group and gastric ulcer status; the following Minitab
output indicates that these data suggest that this is indeed the case ()(32 =10.107, p = 0.018).

Chi-Square Test: Control, Gastric_ulcer
Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts
Control Gastric_ulcer Total
A 4219 79 4298
4203.01 94.99
0.061 2.691
B 890 16 906
885.98 20.02
0.018 0.808
AB 313 4 317
309.99 7.01
0.029 1.290
0] 4578 127 4705
4601.02 103.98
0.115 5.095
Total 10000 226 10226
Chi-Sq = 10.107, DF = 3, P-value = 0.018

Beyond the significance test, the above Minitab output also indicates that the cells which contribute
significantly to the test statistic are for the gastric ulcer group and the A and O blood types: the gastric
ulcer group has significantly less individuals than expected in the A blood group and significantly more
than expected in the O blood group. The term “expected” is used here to mean expected if the blood
group and gastric ulcer status variables were indeed independent. This numerical result leads us to
wonder if there is a genetic (or otherwise) link between the being in the O blood group and one’s
proneness to gastric ulcers. Interestingly, when examining the full dataset, a similar result was observed
for peptic ulcers, but not for duodenal ulcers.
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Note also that whenever the contingency table row and/or column variable is ordinal (instead of
nominal), statistical techniques such as Mantel-Haenszel xz test (for linearity) or one of the multinomial
logit models (such as the proportional odds model) discussed in §4.4 should be used for testing. In this
ordinal case, the usual chi-square test lacks power, and so should be avoided. In the previous example,
since both variables (ABO blood group and gastric ulcer status) are nominal — and since the sample size
is “large” — the data are well analyzed using the usual X2 test.

One important extensions of the methods considered here is to multi-way tables such as in the following
2x2x2 illustration taken from p. 209 of Agresti (2007). The following three-way tables gives data from a
1992 survey of Dayton, Ohio high school seniors who were asked whether they have ever used
cigarettes (C), alcohol (A), and/or marijuana (M). The task is to detect any relationships between the
three variables (A, C and M). It is sometimes advantageous to think of this 3-way table as two 2x2
“faces”: the one at left corresponding to the smokers (C = Yes) and the one at right corresponding to the
non-smokers (C = No).

C=Yes C=No
M = Yes M = No M = Yes M = No
A =Yes 911 538 A =Yes 44 456
A=No 3 43 A=No 2 279

Note that for this dataset, the estimated odds ratios for the smokers and non-smokers are O_yes =

911x43 ~ 44X279
=24.27 and By, =
3x538 2X456

Breslow-day test, performed in the following SAS/FREQ analysis, retains the claim of equal odds across
the smoking and non-smoking faces (i.e., Ho: Oc=yes = Ocno = 0, 1> = 0.3970, p = 0.5286). Next, note
that the so-called Mantel-Haenszel (MH) estimate of the adjusted odds ratio is 8,y = 18.6537 and that
the provided 95% confidence interval, (7.4617,46.6324), does not contain the value one. Similarly, the
Cochran-Mantel-Haenszel conditional test of independence between A and M controlling for C (i.e., Hy:
0 =1) is rejected here ()(12 =76.4645, p < 0.0001). The interpretation of this estimated odds ratio is that
after controlling for whether a HS Senior is a smoker or not, the odds that he or she has used marijuana
is 18.65 times higher if he or she has used alcohol at least once.

= 13.46 respectively. Even though these sample values differ, the

data one;
do alc="yes","no";
do cig="yes","no";
do mar="yes","no";
input count @Q@;

The FREQ Procedure
Summary Statistics for alc by mar
Controlling for cig

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

output; Statistic Alternative Hypothesis DF Value Prob

end; end; end;
datalines; 1 Nonzero Correlation 1 76.4645 <.0001
911 538 44 456 2 Row Mean Scores Differ 1 76.4645 <.0001
3 43 2 279 3 General Association 1 76.4645 <.0001

proc freq order=data; Estimates of the Common Relative Risk (Row1/Row2)

weight count; Type of Study Method Value 95% Confidence Limits
tables cig*alc*mar/
nopercent nocol Case-Control Mantel-Haenszel 18.6537 7.4617 46.6324
norow cmh; (0dds Ratio) Logit 19.1174 7.7212 47.3339
run; Cohort Mantel-Haenszel 10.4729 4.4026 24.9132
(Coli Risk) Logit 10.5865 4.4592 25.1332
Cohort Mantel-Haenszel 0.8199 0.7971 0.8434

9
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(Col2 Risk) Logit 0.8624 0.8387 0.8867

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 0.3970
DF 1
Pr > ChiSq 0.5286

Total Sample Size = 2276

A few comments are in order here. First, for more complicated datasets and analyses, we will use the
SAS package, giving both the program (left) and output (right) so as to familiarize readers with the
syntax and output. Second, we stress that the above Mantel-Haenszel odds ratio estimate is indeed a
“conditional” one in that the relationship between alcohol and marijuana usage have been assessed
after adjusting (or controlling) for smoking status. As such, 8, is a weighted average of 8,_y,s and

§C=NO. A less-desirable result would be obtained by summing together (i.e., “collapsing”) the two faces

. . . A 955x322
table and marginal odds ratio estimate: Oy gpc = ﬁ = 61.87.

III

to obtain the following “margina

Marginal Table M = Yes M = No
A =Yes 955 994
A=No 5 322

Instead of adjusting for the third variable (smoking status), the above marginal result simply ignores it,
which can often give unreliable results.

1.6 Simple Linear Regression Methods

Two continuous random variables — one called the dependent variable (Y) and the other the
independent variable (X) — can be related using simple linear regression (SLR). SLR holds that

E(Yi) = Bo+ Pix¢, fork=1,2,..,n

This model makes several underlying assumptions (including normality and constant variance). In this
case, ordinary least-squares and maximum likelihood estimation methods are equivalent and can be
used to estimate the unknown intercept (o) and slope (B;). Testing whether the slope is zero (§; = 0) is
equivalent to testing that the independent variable is not a good predictor of the dependent variable. A

related measure is the linear correlation coefficient (denoted p); since it can be shown that §; = p X Z—y,
X

testing whether the correlation coefficient is zero is equivalent to testing whether the slope is zero.
Setting a confidence interval for the correlation coefficient is more involved than doing so the slope
parameter, and we addressed these topics in depth in the next chapter.

Interestingly, as discussed on p.577 of Samuels & Witmer (2003), regressing Y on a dummy variable is
equivalent to the equal-variance, two-sample t-test discussed above in §2.4. To see this, consider
testing for equality of two means associated with drugs A and B in a study in which n; patients are
randomized to receive drug A and n, patients are randomized to receive drug B; the null hypothesis is
then Hq: ta = pg. Define the so-called dummy variable (Dy) for each patient to be one for the drug A
patients and zero for the drug B patients. Thus,
_(Lfork=1,2,..n4
Dy = {O,fork =n;+1,n,+2,..n, +n,

10
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Then for the SLR model, E(Yy) = Bo + B1Dx, fork =1, 2, ..., n = n; + n,, the right hand side of this
expression is equal to (Bo + B1) for the n; patients who received Drug A and is equal to B, for the n;
patients who received Drug B. The left hand sides in these situations are equal to s and pg respectively.
Therefore testing whether the slope parameter ([3;) is equal to zero is equivalent to testing Ho: pa = Us
since B1 = ta — Ug. In sum, simple linear regression with a dummy variable in place of the independent
variable is equivalent to the equal-variance two-sample t-test. An illustration is given in §2.5. Not
surprisingly, one-way ANOVA with d drugs extends this idea by introducing (d-1) dummy variables (in
place of the single dummy variable introduced above) and using multiple linear regression in place of
SLR.

1.7 One- and Two-way ANOVA

The final introductory topic considered here is one- and two-way ANOVA (analysis of variance). An
illustration of one-way ANOVA would involve comparing the means efficacy (as measured using some
guantitative measurement) of three the drugs: A, B and C. The null hypothesis states that these three
means are equal. This hypothesis is tested using the usual F statistic, which is obtained by forming the
ratio of the between groups mean squares over the within groups mean squares. When this F statistic is
sufficiently large, we conclude that the (between groups) drug means significantly differ. A next step is
to then perform a mean separation procedure. These include Tukey’s HSD test, Fisher’s LSD test, the
Newman-Keuls test, or to use Bonferroni procedure. Each of these methods helps to decide precisely
which means differ from one another, and additional details can be found in most introductory
textbooks.

A two-way ANOVA analysis would be appropriate for example if we wanted to study the same three
drugs (i.e., drugs A, B, and C) and two methods of delivery (tablet versus injection). Here, “drug” and
“method of delivery” are called factors, whereas A, B, C, tablet, and injection are called levels of these
factors. A big concern in studies of this type is whether interaction exists between the factors drug and
method of delivery (as would occur, for example, if drug B is “best” when taken in tablet form but that
no differences exist between the drugs when delivered via injection). We return to these concepts in
more detail in §3.2.
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