Advanced Biostatistics    Chapter 7: Nonlinear Regression with AR1 Errors          17 April 2006

 

 

The above mean curve suggests LL3 model function, , and plot of Residuals versus Lagged-Residuals suggests AR(1) time series error structure, et = fet-1 + at, -1 < f < 1, where the at are assumed to be independent N(0,s2).

 

 

 

 

Independent LL3 Model

 

start neg2lla(th) global(xx,yy,nn);

  th1=th[1]; th2=th[2]; th3=th[3]; sig=th[4]; sig2=sig*sig;

  tt=xx/th3; den=1+tt; eta=th1+(th2-th1)/den; res=yy-eta;

  thingy=nn*log(sig2)+(1/sig2)*t(res)*res;

  return(thingy);

finish neg2lla;

 

MINN2LLA =  -124.5789

 

   THA        SESA

54.299768    1.384656

5.6606322   0.4736729

7.9605237   0.5770078

0.1913774   0.0130267

 

AR(1) LL3 Model

 

start neg2llb(th) global(xx,yy,nn);

  th1=th[1]; th2=th[2]; th3=th[3]; sig=th[4]; rho=th[5]; sig2=sig*sig;

  omr2=1-rho**(0.20); sig2a=sig2*omr2; tt=xx/th3; den=1+tt;

  eta=th1+(th2-th1)/den; res=yy-eta; rest=res[2:nn,]; ress=res[1:(nn-1),];

  resp=rest-(rho**(0.10))*ress;

  thingy=nn*log(sig2a)-log(omr2)+(1/sig2a)*( omr2*res[1]*res[1]+t(resp)*resp );

  return(thingy);

finish neg2llb;

 

MINN2LLB =  -159.3582

 

  THB          SESB

54.214864     2.72031

5.8524633   0.8959594

8.0248275     1.13469

0.1930062   0.0222893

0.0282681   0.0279577

 

 

For these data, f is estimated to be 0.0283, and the LR test of f = 0 is soundly rejected (c12 = –2DLL = 34.78, p < 0.0001).

 

Note too that the SE’s associated with the LD50 approximately doubles as we move from the independent LL3 model to the AR(1) LL3 model.