Advanced Biostatistics March 1, 2006 First Exam

Name\_\_\_\_\_

Directions: *Thoroughly, clearly, neatly and correctly* answer the following 3 exercises and 3 short answer questions in the space given (or on the back), showing all relevant calculations. Use  $\alpha = 5\%$  throughout.

### **Exercises**

- 1. (1.5 + 3 + 1.5 = 6 points) Amphetamine is a drug that it is felt suppresses appetite. To test this effect, a pharmacologist randomly allocated 24 rats to receive one of three treatment groups (to receive an injection of amphetamine at one of two dosage levels or an injection of saline solution, i.e., amphetamine at zero dose level). She then measured the amount of food consumed by each animal in the 3-hour period following injection, and these data are reproduced, graphed and analyzed on p.1 of the *Appendix*. Her goal is to test whether there is a significant linear relationship between amphetamine dose and food consumption.
  - (a) State the assumptions that must be made for this SLR analysis *in the context of this study*. Be specific and clear.

(b) Test whether there is a significant linear relationship between amphetamine dose and food consumption. Be sure to write out the statistical model function, the null and alternative hypotheses, value of the relevant test statistic (TS) and distribution (including df), p-value, and your detailed and clear conclusion.

| Statistical Model Function |    |             |
|----------------------------|----|-------------|
| Null                       |    | Alternative |
| TS                         | df | p-value     |

Detailed and clear conclusion

(c) Clearly interpret the estimate of the slope parameter in this SLR model in the context of this study. Give the units.

- 2. (4 + 5 = 9) The new cholesterol-lowering supplement, Fibralo, was studied in a double-blind study against the marketed reference supplement, Gemfibrozil, in 34 non-insulin dependent diabetic patients. The study's objective was to compare the mean decrease in triglyceride levels (denoted "trichg" in the dataset) between the two treatment groups. The degree glycemic control, measured by hemoglobin A<sub>1c</sub> levels (denoted "hgba1c" in the dataset), was thought to be an important factor as well. This covariate was measured at the start of the study and is shown in the listing on p.2 in the *Appendix* with the percent changes in triglycerides from pre-treatment to the end of the 10-week trial. The data are graphed and analyzed using Minitab on pp.3-4 of the *Appendix*.
  - (a) After removing the hemoglobin covariate, test whether there is a difference in mean responses between supplements. *For this part only, assume that the respective lines are parallel*. Give the relevant Minitab output # to use in the analysis, null and alternative hypothesis, observed test statistic and distribution (including df), p-value and detailed conclusion.

| Use Minitab output # V | Vrite out model function: $\underline{E(Y)} =$ |  |
|------------------------|------------------------------------------------|--|
| Null                   | Alternative                                    |  |
| TS                     | df p-value                                     |  |

Detailed conclusion

(b) Dropping (no longer making) the parallelism assumption used in part (a), test whether a single regression line could be used for the two groups for the data graphed at the top of p.3 in the *Appendix*, clearly writing out your statistical model, your new hypotheses, calculated test statistic and its distribution (with df), p-value, and your detailed and clear conclusion. Identify the relevant output #(s).

| Write out the model function: $\underline{E(Y)} =$            |   |  |  |  |  |  |
|---------------------------------------------------------------|---|--|--|--|--|--|
| Null hypothesis                                               | - |  |  |  |  |  |
| Alternative hypothesis                                        | - |  |  |  |  |  |
| Showing your calculations, give the calculated test statistic |   |  |  |  |  |  |
|                                                               |   |  |  |  |  |  |

Degrees of freedom

p-value \_\_\_\_\_

Detailed and clear conclusion

- (0.75 + 0.75 + 1 + 2 + 2 + 1 = 7.5 points) Cardiac researchers at a major U.S. research hospital conducted a *crossover* study of the effects of three drug treatments (labeled A, B and C) on heart rates of randomly chosen elderly individuals. The data are analyzed in SAS, and the SAS programs and outputs are given on pages 5 and 6 of the *Appendix*. Note that each of these programs includes a term for the carryover effect of the previous treatment (labeled "residue" here).
  - (a) How many patients were used in this study?
  - (b) How many sequences of the three drugs were used in this study?
  - (c) Do you feel that the washout period used in this study (two weeks) was sufficient to remove the effects of the previous drug before the next one was given? Why or why not? Be specific (give relevant p-value).
  - (d) Using only the **<u>First SAS Output</u>**, do you feel that the treatment averages differ? Be specific, giving your hypotheses, value of the test statistic, its distribution (including degrees of freedom), p-value, and a detailed conclusion.

(e) Using only the <u>Second SAS Output</u>, do you feel that the treatment averages differ? Be specific, giving your hypotheses, value of the test statistic, its distribution (including degrees of freedom), p-value, and a detailed conclusion.

(f) Summarize your findings for this study in terms of whether the treatments differ, and give the logical "next step" to help us make our final conclusion regarding these treatments.

### Short Answer Questions (2.5 points each) - Be specific and clear in your responses

4. Returning to Exercise 2(a), if the covariate (hgba1c) was ignored and we wanted to compare the treatment means, what would our conclusion be and why? The correct output here is output #

5. A medical researcher wanted to study the efficacy of six drugs (labeled A – F), found 3 patients to whom she would randomize the drugs, but was told that a patient could only take four of the six drugs. She decided to give drugs A, B, D and E to the first patient, drugs B, C, E and F to the second patient, and drugs A, C, D and F to the third patient.

Why is this block design "incomplete"?

Why is this incomplete block design not "balanced"?

6. You collect count data for males and females and survival rates from a type of surgery, and you arrange the data into a two by two table with males on the first row and females on the second row, survival counts in the first column and deceased counts in the second column.

Your calculated estimated odds ratio is 2.8239. Clearly interpret this estimate in the context of this setting.

Your calculated 90% confidence interval for the true odds ratio is (1.2997,6.1356). Clearly interpret this interval in the context of this setting and give its *ramifications*.

### Exercise 1 output

|                | Dose = 0.0  mg/kg | Dose = 2.5 mg/kg | Dose = 5.0  mg/kg |
|----------------|-------------------|------------------|-------------------|
|                | 112.6             | 73.3             | 38.5              |
|                | 102.1             | 84.8             | 81.3              |
|                | 90.2              | 67.3             | 57.1              |
|                | 81.5              | 55.3             | 62.3              |
|                | 105.6             | 80.7             | 51.5              |
|                | 93.0              | 90.0             | 48.3              |
|                | 106.6             | 75.5             | 42.7              |
|                | 108.3             | 77.1             | 57.9              |
|                |                   |                  |                   |
| Mean (g/kg)    | 100.0             | 75.5             | 55.0              |
| SD(g/kg)       | 10.7              | 10.7             | 13.3              |
| No. of animals | 8                 | 8                | 8                 |



| Output 1.1. Regression Analysis: foodcons versus dose     |                          |                           |                     |                     |       |  |  |  |
|-----------------------------------------------------------|--------------------------|---------------------------|---------------------|---------------------|-------|--|--|--|
| The regression equation is<br>foodcons = 99.3 - 9.01 dose |                          |                           |                     |                     |       |  |  |  |
| Predictor<br>Constant<br>dose                             | Coef<br>99.331<br>-9.008 | SE Coef<br>3.680<br>1.140 | т<br>26.99<br>-7.90 | P<br>0.000<br>0.000 |       |  |  |  |
| S = 11.40                                                 | R-Sq =                   | 73.9% R·                  | -Sq(adj) = 7        | 12.8%               |       |  |  |  |
| Analysis of Va                                            | riance                   |                           |                     |                     |       |  |  |  |
| Source                                                    | DF                       | SS                        | MS                  | F                   | P     |  |  |  |
| Regression                                                | 1                        | 8113.5                    | 8113.5              | 62.41               | 0.000 |  |  |  |
| Residual Error                                            | 22                       | 2859.9                    | 130.0               |                     |       |  |  |  |
| Total                                                     | 23                       | 10973.4                   |                     |                     |       |  |  |  |

# Exercise 2 output

# Printout of data

| trt | hgba1c | trichg | trtfib | product |
|-----|--------|--------|--------|---------|
| FIB | 7.0    | 5      | 1      | 7.0     |
| FIB | 6.0    | 10     | 1      | 6.0     |
| FIB | 7.1    | -5     | 1      | 7.1     |
| FIB | 8.6    | -20    | 1      | 8.6     |
| FIB | 6.3    | 0      | 1      | 6.3     |
| FIB | 7.5    | -15    | 1      | 7.5     |
| FIB | 6.6    | 10     | 1      | 6.6     |
| FIB | 7.4    | -10    | 1      | 7.4     |
| FIB | 5.3    | 20     | 1      | 5.3     |
| FIB | 6.5    | -15    | 1      | 6.5     |
| FIB | 6.2    | 5      | 1      | 6.2     |
| FIB | 7.8    | 0      | 1      | 7.8     |
| FIB | 8.5    | -40    | 1      | 8.5     |
| FIB | 9.2    | -25    | 1      | 9.2     |
| FIB | 5.0    | 25     | 1      | 5.0     |
| FIB | 7.0    | -10    | 1      | 7.0     |
| GEM | 5.1    | 10     | 0      | 0.0     |
| GEM | 6.0    | 15     | 0      | 0.0     |
| GEM | 7.2    | -15    | 0      | 0.0     |
| GEM | 6.4    | 5      | 0      | 0.0     |
| GEM | 5.5    | 10     | 0      | 0.0     |
| GEM | 6.0    | -15    | 0      | 0.0     |
| GEM | 5.6    | -5     | 0      | 0.0     |
| GEM | 5.5    | -10    | 0      | 0.0     |
| GEM | 6.7    | -20    | 0      | 0.0     |
| GEM | 8.6    | -40    | 0      | 0.0     |
| GEM | 6.4    | -5     | 0      | 0.0     |
| GEM | 6.0    | -10    | 0      | 0.0     |
| GEM | 9.3    | -40    | 0      | 0.0     |
| GEM | 8.5    | -20    | 0      | 0.0     |
| GEM | 7.9    | -35    | 0      | 0.0     |
| GEM | 7.4    | 0      | 0      | 0.0     |
| GEM | 5.0    | 0      | 0      | 0.0     |
| GEM | 6.5    | -10    | 0      | 0.0     |

# Exercise 2 output



| Output 2.1. Regression Analysis: trichg versus hgba1c |                         |            |             |       |       |  |  |  |
|-------------------------------------------------------|-------------------------|------------|-------------|-------|-------|--|--|--|
| The regression<br>trichg = 65.0                       | n equation<br>- 10.6 hg | is<br>balc |             |       |       |  |  |  |
| Predictor                                             | Coef                    | SE Coef    | Т           | P     |       |  |  |  |
| Constant                                              | 65.05                   | 10.81      | 6.02        | 0.000 |       |  |  |  |
| hgbalc                                                | -10.629                 | 1.564      | -6.80       | 0.000 |       |  |  |  |
| S = 10.85                                             | R-Sq =                  | 59.1% R-8  | Sq(adj) = 5 | 7.8%  |       |  |  |  |
| Analysis of Va                                        | ariance                 |            |             |       |       |  |  |  |
| Source                                                | DF                      | SS         | MS          | F     | P     |  |  |  |
| Regression                                            | 1                       | 5442.7     | 5442.7      | 46.21 | 0.000 |  |  |  |
| Residual Erro                                         | r 32                    | 3769.1     | 117.8       |       |       |  |  |  |
| Total                                                 | 33                      | 9211.8     |             |       |       |  |  |  |

| Output 2.2. Regression Analysis: trichg versus trtfib, hgba1c, product |                          |                    |             |            |       |  |  |  |
|------------------------------------------------------------------------|--------------------------|--------------------|-------------|------------|-------|--|--|--|
| The regression<br>trichg = 58.0                                        | n equation<br>+ 26.0 tri | is<br>tib - 10.3 h | gbalc - 2.3 | 30 product |       |  |  |  |
| Predictor                                                              | Coef                     | SE Coef            | Т           | Р          |       |  |  |  |
| Constant                                                               | 58.05                    | 12.66              | 4.58        | 0.000      |       |  |  |  |
| trtfib                                                                 | 26.00                    | 19.92              | 1.31        | 0.202      |       |  |  |  |
| hgba1c                                                                 | -10.283                  | 1.875              | -5.49       | 0.000      |       |  |  |  |
| product                                                                | -2.304                   | 2.867              | -0.80       | 0.428      |       |  |  |  |
| s = 9.734                                                              | R-Sq = 6                 | 59.1% R-S          | q(adj) = 60 | 5.1%       |       |  |  |  |
| Analysis of Va                                                         | ariance                  |                    |             |            |       |  |  |  |
| Source                                                                 | DF                       | SS                 | MS          | F          | P     |  |  |  |
| Regression                                                             | 3                        | 6369.3             | 2123.1      | 22.41      | 0.000 |  |  |  |
| Residual Erro                                                          | r 30                     | 2842.5             | 94.7        |            |       |  |  |  |
| Total                                                                  | 33                       | 9211.8             |             |            |       |  |  |  |

#### Output 2.3. Regression Analysis: trichg versus trtfib

The regression equation is trichg = -10.3 + 6.22 trtfib Predictor Coef SE Coef T P Constant -10.278 3.927 -2.62 0.013trtfib 6.215 5.725 1.09 0.286S = 16.66 R-Sq = 3.6% R-Sq(adj) = 0.5%Analysis of Variance Source DF SS MS F P Regression 1 327.2 327.2 1.18 0.286Residual Error 32 8884.5 277.6Total 33 9211.8

| Output 2.4. Regression Analysis: trichg versus trtfib, hgba1c |                         |                     |             |       |       |  |  |  |
|---------------------------------------------------------------|-------------------------|---------------------|-------------|-------|-------|--|--|--|
| The regression<br>trichg = 64.6                               | n equation<br>+ 10.2 tr | is<br>tfib - 11.3 h | lgbalc      |       |       |  |  |  |
| Predictor                                                     | Coef                    | SE Coef             | Т           | P     |       |  |  |  |
| Constant                                                      | 64.593                  | 9.643               | 6.70        | 0.000 |       |  |  |  |
| trtfib                                                        | 10.222                  | 3.363               | 3.04        | 0.005 |       |  |  |  |
| hgbalc                                                        | -11.268                 | 1.410               | -7.99       | 0.000 |       |  |  |  |
| S = 9.678                                                     | R-Sq =                  | 68.5% R-S           | 6q(adj) = 6 | 6.4%  |       |  |  |  |
| Analysis of Va                                                | ariance                 |                     |             |       |       |  |  |  |
| Source                                                        | DF                      | SS                  | MS          | F     | P     |  |  |  |
| Regression                                                    | 2                       | 6308.1              | 3154.0      | 33.67 | 0.000 |  |  |  |
| Residual Error                                                | 31                      | 2903.7              | 93.7        |       |       |  |  |  |
| Total                                                         | 33                      | 9211.8              |             |       |       |  |  |  |

```
proc glm;
    class pt seq per trt residue;
    model hr=seq pt(seq) per trt residue;
run;
```

### First SAS Output for Exercise 3 -

| The GLM Procedure      |          |    |           |          |         |         |        |
|------------------------|----------|----|-----------|----------|---------|---------|--------|
| Dependent Venichles hu |          |    |           |          |         |         |        |
| Dependent variable: hr |          |    | -         | -        |         |         |        |
| _                      |          |    | Sum       | DT       | _       |         |        |
| Source                 |          | DF | Squar     | es Mean  | Square  | F Value | Pr > F |
| Model                  |          | 29 | 6408.6944 | 14 220   | .989464 | 3.91    | <.0001 |
| Error                  |          | 42 | 2372.5833 | 33 56    | .490079 |         |        |
| Corrected Total        |          | 71 | 8781.2777 | 78       |         |         |        |
|                        | R-Square | Co | oeff Var  | Root MSE | hr I    | Mean    |        |
|                        | 0.729813 | ç  | 9.301326  | 7.515988 | 80.8    | 0556    |        |
| Source                 |          | DF | Type I    | SS Mean  | Square  | F Value | Pr > F |
| seq                    |          | 5  | 508.9444  | 14 101   | .788889 | 1.80    | 0.1333 |
| pt(seq)                |          | 18 | 4692.3333 | 33 260   | .685185 | 4.61    | <.0001 |
| per                    |          | 2  | 146.7777  | 78 73    | .388889 | 1.30    | 0.2835 |
| trt                    |          | 2  | 668.7777  | 78 334   | .388889 | 5.92    | 0.0054 |
| residue                |          | 2  | 391.8611  | 11 195   | .930556 | 3.47    | 0.0404 |
| Source                 |          | DF | Type III  | SS Mean  | Square  | F Value | Pr > F |
| seq                    |          | 5  | 701.1833  | 33 140   | .236667 | 2.48    | 0.0466 |
| pt(seq)                |          | 18 | 4692.3333 | 33 260   | .685185 | 4.61    | <.0001 |
| per                    |          | 1  | 6.7500    | 00 6     | .750000 | 0.12    | 0.7313 |
| trt                    |          | 2  | 343.9500  | 00 171   | .975000 | 3.04    | 0.0583 |
| residue                |          | 2  | 391.8611  | 11 195   | .930556 | 3.47    | 0.0404 |

→ Note that "trtb" is a contrast between treatments A and B, and "trtc" is a contrast between treatments A and C

```
data one;
input pt seq$ per basehr hr trt$ residue @@;
if trt='A' then do; trtb=-1; trtc=-1; end;
else if trt='B' then do; trtb=1; trtc=0; end;
else if trt='C' then do; trtb=0; trtc=1; end;
datalines;
(Datalines deleted)
proc glm;
class pt seq per residue;
model hr=seq pt(seq) per trtb trtc residue;
run;
```

#### Second SAS Output for Exercise 3 -

| The GLM Procedure      |       |             |              |         |        |
|------------------------|-------|-------------|--------------|---------|--------|
| Dependent Variable: hr |       |             |              |         |        |
| ·                      |       | Sum of      |              |         |        |
| Source                 | DF    | Squares     | Mean Square  | F Value | Pr > F |
| Model                  | 29    | 6408.694444 | 220.989464   | 3.91    | <.0001 |
| Error                  | 42    | 2372.583333 | 56.490079    |         |        |
| Corrected Total        | 71    | 8781.277778 | i            |         |        |
| R-Squa                 | re Co | eff Var – R | oot MSE hr   | Mean    |        |
| 0.7298                 | 13 9  | .301326 7   | .515988 80.8 | 0556    |        |
| Source                 | DF    | Type I SS   | Mean Square  | F Value | Pr > F |
| seq                    | 5     | 508.944444  | 101.788889   | 1.80    | 0.1333 |
| pt(seq)                | 18    | 4692.333333 | 260.685185   | 4.61    | <.0001 |
| per                    | 2     | 146.77778   | 73.388889    | 1.30    | 0.2835 |
| trtb                   | 1     | 320.333333  | 320.333333   | 5.67    | 0.0219 |
| trtc                   | 1     | 348.444444  | 348.444444   | 6.17    | 0.0171 |
| residue                | 2     | 391.861111  | 195.930556   | 3.47    | 0.0404 |
| Source                 | DF    | Type III SS | Mean Square  | F Value | Pr > F |
| seq                    | 5     | 701.183333  | 140.236667   | 2.48    | 0.0466 |
| pt(seq)                | 18    | 4692.333333 | 260.685185   | 4.61    | <.0001 |
| per                    | 1     | 6.750000    | 6.750000     | 0.12    | 0.7313 |
| trtb                   | 1     | 217.800000  | 217.800000   | 3.86    | 0.0562 |
| trtc                   | 1     | 292.612500  | 292.612500   | 5.18    | 0.0280 |
| residue                | 2     | 391.861111  | 195.930556   | 3.47    | 0.0404 |