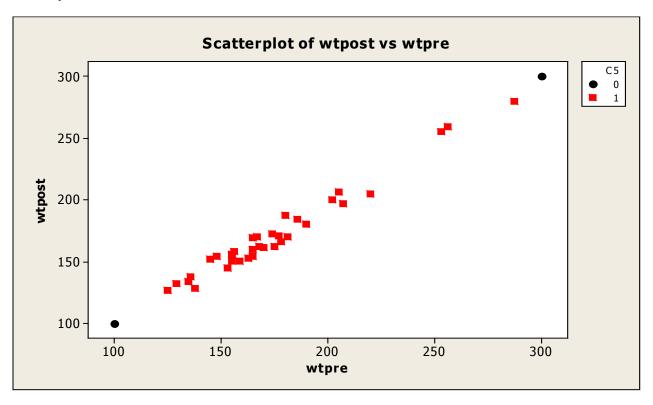
An Important Note on Homework Assignments – Graduate Students are to submit their own answers (report), whereas Undergraduate Students are to work in a team of three (3) students (the same team throughout the semester). Thus, Undergraduate Students will submit one solution report per team and the subsequent grade will apply to all students in the corresponding group.

<u>Directions</u>: Answer the (parts of the) following four exercises, showing all relevant work. Conclusions and justifications are to be given in clear detailed English. Please type up your solutions or write <u>very</u> neatly.

1. [All Students] Norman & Streiner report (p.146) the medical data set reproduced below. Analyze these data by performing each of the following analyses. In each case, list all necessary assumptions, and clearly summarize your conclusions.

Subject	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Y	46	36	40	44	36	30	42	35	42	50	45	53	48	38	43	58
Treatment	A	A	В	Α	Α	В	Α	В	В	Α	A	В	В	В	В	Α
X	12	14	27	35	26	21	48	51	62	64	60	77	91	84	55	74

- (a) Perform two independent sample t-tests (one assuming equal variances and one assuming unequal variances) comparing the Y averages for the two treatment groups.
- (b) Regress Y on X, obtain parameter estimates, and test whether X is a good predictor of Y.
- (c) Perform the ANOCOV (Analysis of covariance) analysis to determine if the Y averages differ for the two treatment groups after removing the effect of X.
- 2. [All Students] Extracorporeal membrane oxygenation (ECMO) is a potentially life-saving procedure that is used to treat newborn babies who suffer from severe respiratory failure. An experiment was conducted in which 20 babies were treated with ECMO and 30 babies were treated with conventional medical therapy (CMT). At the end of the study, 11 of the CMT babies died (19 survived), and only 2 of the ECMO babies died (18 survived).
 - (a) Test whether these data suggest that the therapies significantly differ. Also, test the one-tailed alternative that the ECMO procedure is better than (in terms of better survival rates) the conventional therapy.
 - (b) Find and interpret the Odds Ratio (OR) of survival comparing the ECMO therapy with the CMT, and provide a 95% confidence interval for the true OR.
 - (c) Let's alter the above data by supposing that of the 20 ECMO babies, only one died (19 survived). Explain why the usual (chi-square) test statistic is inappropriate here, and analyze these new data using the correct analysis. For this part, perform only the one-tailed test specified as the second test in part (a).
- 3. [G students only] Two groups of children, one with attention deficit disorder (ADD) and a control group of children without ADD, were randomly given either a placebo or the drug Ritalin. A measure of activity was made on all the children with the results shown in the table below (higher numbers indicate more activity). Analyze these data (listing all necessary assumptions), including all relevant observations and implications.


Treatment	Group	Drug	Activity
1	ADD	PLACEBO	90
1	ADD	PLACEBO	88
1	ADD	PLACEBO	95
2	CONTROL	PLACEBO	60
2	CONTROL	PLACEBO	62

2	CONTROL	PLACEBO	66
3	ADD	RITALIN	72
3	ADD	RITALIN	70
3	ADD	RITALIN	64
4	CONTROL	RITALIN	86
4	CONTROL	RITALIN	86
4	CONTROL	RITALIN	82

4. [All Students; Walker, 2002:61] A drug company is developing a new appetite suppressing compound for use in weight reduction. A preliminary study of 35 obese patients provided the following data on patients' body weights (in pounds) before ("PreW", in pounds) and after ("PostW", in pounds) 10 weeks of treatment with the new compound. These data are graphed on the next page (red squares) with two additional points (black circles): one at the point (100,100) and one at the point (300,300); these latter two points are not a part of the data, but may be useful for part (c) of this exercise.

Sub	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PreW	165	202	256	155	135	175	180	174	136	168	207	155	220	163	159	253	138	287
PostW	160	200	259	156	134	162	187	172	138	162	197	155	205	153	150	255	128	280
Sub	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
PreW	177	181	148	167	190	165	155	153	205	186	178	129	125	165	156	170	145	
PostW	171	170	154	170	180	154	150	145	206	184	166	132	127	169	158	161	152	

- (a) Does the new treatment look at all promising? Be specific and list all necessary assumptions and/or reasons why some usual one(s) are not needed here.
- (b) Does a subjects' "Pre" weight appear to be a good linear predictor of his/her "Post" weight? Again, be specific and list all necessary assumptions and/or reasons why some usual one(s) are not needed here.
- (c) Reconcile the analyses in parts (a) and (b). That is, discuss any connection(s) (if any) between the two analyses.

Homework 1 Attachment – Minitab Output

Exercise 1(a)

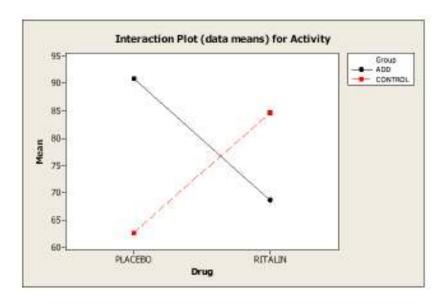
```
Two-Sample T-Test and CI: y, trt
Two-sample T for y
           N
                   Mean
                            StDev
                                    SE Mean
trt
            8
                  44.63
                             7.23
                                        2.6
b
            R
                  41.13
                             7.22
                                        2.6
Difference = mu (a) - mu (b)
                                  Estimate for difference: 3.50
95% CI for difference: (-4.25, 11.25)
T-Test of difference = 0 (vs not =): T-Value = 0.97 P-Value = 0.349 DF = 14
Both use Pooled StDev = 7.22
Two-Sample T-Test and CI: y, trt
Two-sample T for y
                            StDev
trt
           N
                   Mean
                                    SE Mean
а
                  44.63
                             7.23
                                        2.6
                  41.13
                             7.22
                                        2.6
Difference = mu (a) - mu (b)
                                 Estimate for difference: 3.50
95% CI for difference: (-4.30, 11.30)
T-Test of difference = 0 (vs not =): T-Value = 0.97 P-Value = 0.350 DF = 13
```

Exercise 1(b)

```
Regression Analysis: y versus x
The regression equation is
y = 35.0 + 0.158 x
Predictor
                Coef
                         SE Coef
                                         T
Constant
              34.978
                         3.553
                                       9.84
                                               0.000
             0.15774
                         0.06381
                                       2.47
                                               0.027
               R-Sq = 30.4%
s = 6.227
                            R-Sq(adj) = 25.4%
Analysis of Variance
Source
                DF
                             SS
                                        MS
Regression
                         236.94
                                     236.94
                                                 6.11
                                                        0.027
                 1
                                      38.77
Residual Error
                 14
                         542.81
Total
                 15
                         779.75
```

Exercise 1(c)

```
Regression Analysis: y versus x, dum, dumx
The regression equation is
y = 35.1 + 0.228 x - 5.09 dum - 0.039 dumx
Predictor
                 Coef
                          SE Coef
                                           Т
                           4.192
                                                0.000
Constant
               35.127
                                        8.38
              0.22819
                          0.08908
                                        2.56
                                                0.025
dum
               -5.093
                           6.673
                                       -0.76
                                                0.460
dumx
              -0.0386
                           0.1212
                                       -0.32
                                                0.756
s = 5.532
                R-Sq = 52.9%
                               R-Sq(adj) = 41.1%
Analysis of Variance
                  DF
Source
                              SS
                                          MS
                                                     F
                          412.55
                                      137.52
                                                  4.49
                                                          0.025
Regression
                  3
                                       30.60
Residual Error
                  12
                          367.20
Total
                  15
                          779.75
```


Regression A	Regression Analysis: y versus x, dum										
The regression $y = 36.0 + 0.2$	-										
Predictor	Coef	SE Coef	T	P							
Constant	35.994	3.074	11.71	0.000							
x	0.20735	0.05829	3.56	0.004							
dum	-6.999	2.844	-2.46	0.029							
s = 5.337	R-Sq =	52.5% R-S	Sq(adj) = 4	5.2%							
Analysis of Va	riance										
Source	DF	SS	MS	F	P						
Regression	2	409.45	204.72	7.19	0.008						
Residual Erro	13	370.30	28.48								
Total	15	779.75									

Exercise 2(a)

Chi-Squa	Chi-Square Test: CMT, ECMO										
Expected	counts	are printe	ed below	observed	counts						
1	ECMO 18	CMT 19	Total 37								
	14.80	22.20									
2	2	11 7.80	13								
maka 1			50								
Total	20	30	50								
Chi-Sq =		+ 0.461									
DF = 1, I		+ 1.313 = 0.035	= 4.435								

Exercise 3

Two-way AN	Two-way ANOVA: activity versus group, drug									
Analysis of	Varian	ce for act	ivity							
Source	DF	SS	MS	F	P					
group	1	114.1	114.1	10.14	0.013					
drug	1	0.1	0.1	0.01	0.934					
Interaction	1	1474.1	1474.1	131.03	0.000					
Error	8	90.0	11.3							
Total	11	1678.3								

Exercise 4(a)

Paired T-Test and CI: wtpre, wtpost											
Paired T for wtpre - wtpost											
	N	Mean	StDev	SE Mean							
wtpre	35	174.94	35.94	6.07							
wtpost	35	171.49	35.45	5.99							
Difference	35	3.46	6.34	1.07							
95% lower bound for mean difference: 1.65											
T-Test of mean difference = 0 (vs > 0): T-Value = 3.23 P-Value = 0.001											

Exercise 4(b)

Regression Analysis: wtpost versus wtpre										
The regression wtpost = 1.63	_									
Predictor	Coef	SE Coef	T	P						
Constant	1.615	5.407	0.30	0.767						
wtpre	0.97101	0.03030	32.05	0.000						
s = 6.348	R-Sq = 9	06.9% R-Sc	q(adj) = :	96.8%						
Analysis of V	Variance									
Source	DF	SS	MS	F	P					
Regression	1	41397	41397	1027.31	0.000					
Residual Erro	or 33	1330	40							
Total	34	42727								
Unusual Obse	rvations									
Obs wtp:	re wtpos	st Fit	: SE	Fit Re	sidual	St Resid				
3 25	56 259.0	00 250.19	• :	2.68	8.81	1.53	X			
18 28	37 280.0	00 280.29)	3.56	-0.29	-0.06	X			
X denotes an	observation	whose X valu	e gives :	it large i	nfluence.					