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Chapter 10 – Two or More Random Variables 
 

Often, variables (ambition and income) are related, and this must be 

taken into account and quantified. 
 

Example A – 5 Coin Tosses: Let X be the number of Heads in the 5 

tosses, and Y be the number of changes in the sequence.  For example, 

in the sequence ‘THHTT’, there is Y = 2 changes in the sequence, and 

in the sequence ‘HTHTH’, Y = 4.  Then the separate (or so-called 

marginal) distributions of X and Y are the following: 
 

x 0 1 2 3 4 5 

f(x) 1/32 5/32 10/32 10/32 5/32 1/32 

 

y 0 1 2 3 4 

f(y) 2/32 8/32 12/32 8/32 2/32 
 

Deriving the distribution for X is easy since X ~ Binomial(n = 5,ππππ = ½); 

for Y, we list the possibilities (p.269) and count so as to obtain the 

probabilities.  Since X is Binomial, we know µµµµX = E(X) = 2.5 and  

σσσσX
2 = Var(X) = 1.25.  Also,  

µµµµY = E(Y) = (1/32)*{1*8 + 2*12 + 3*8 + 4*2} = 64/32 = 2 

E(Y2) = (1/32)*{12*8 + 22*12 + 32*8 + 42*2} = 160/32 = 5, so σσσσY
2 = 1  

 

For this example, the table of joint probabilities is the following: 
 

Y Marginal  

0 1 2 3 4 Prob’s. 

0 1/32 0 0 0 0 1/32 

1 0 2/32 3/32 0 0 5/32 

2 0 2/32 3/32 4/32 1/32 10/32 

3 0 2/32 3/32 4/32 1/32 10/32 

4 0 2/32 3/32 0 0 5/32 

 

 

X 

5 1/32 0 0 0 0 1/32 

Marginal Prob’s. 2/32 8/32 12/32 8/32 2/32 1 
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These joint probabilities are again obtained by counting from the 

complete list of the 32 sequences on p.269.  We can express the joint 

probabilities as fractions here (Table 10.1, p.271), or as decimals as in 

Table 10.2 on p.272.  In contrast with the joint and marginal 

probabilities above we can also consider conditional probabilities: 

suppose we are told that X = 2, what is the conditional probability 

distribution of Y?  We get it from the X = 2 row of the above joint 

table after dividing through by 10/32: 
 

y 0 1 2 3 4 

f(y/X=2) 0 2/10 3/10 4/10 1/10 
 

Clearly, this distribution is not the same as the marginal distribution 

for Y, so we say that X and Y are not independent (they are therefore 

dependent).  More on this later. 

 

Example B – X and Y are two discrete RVs with probabilities: 
 

Y Marginal  

1 2 3 4 Probabilities 

0 0.10 0.20 0.14 0.06 0.50 X 

1 0.04 0.10 0.22 0.14 0.50 

Marginal Probabilities 0.14 0.30 0.36 0.20 1 

 

Here, X is Bernoulli with ππππ = ½, so µµµµX = 0.5 and σσσσX
2 = 0.25.  Also, 

• µµµµY      = {1*0.14  +  2*0.30  + 3*0.36  + 4*0.20}  = 2.62 

• E(Y2) = {12*0.14 + 22*0.30 + 32*0.36 + 42*0.20} = 7.78, 

• so σσσσY
2 = 7.78 – 2.622 = 0.9156 

Clearly, here too the conditional probability distributions of Y given X 

and the marginal distribution of Y are not the same. 

 

It goes without saying that the joint probabilities sum to one, and that 

the marginal distributions are obtained by summation (see p.271).  

Also, cdf’s (cumulative) are obtained by summing too (p.272). 
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Departing from theory, Tables 10.4 (p.273) and 10.5 (p.274) provide 

actual (empirical) probabilities for 15162 families with at least 5 kids 

with X = # of Girls and Y = # of changes in gender sequence.  This is 

analogous to X = # of H’s and Y = # of changes in sequence. 
 

Previously, we had that events E and F are independent IFF 

• Pr(E/F) = Pr(E), or equivalently, 

• Pr(E∩F) = Pr(E)*Pr(F) 

Here, we have the same results for RVs X and Y: 
 

Random variables X and Y are independent IFF 

• f(x,y) = f(x)*f(y) for all x and y, or equivalently, 

• f(x/y) = f(x) for all x and y 
 

This means that all the joint probabilities in the table must be the 

same as those obtained by multiplying the corresponding row and 

column marginal probabilities.  It follows that X and Y in both above 

examples are dependent.  An ‘independent’ example is given on p.277. 

 

Definition: For RVs X and Y with joint pmf f(x,y),  
 

E{g(X,Y)} = ΣΣΣΣxΣΣΣΣy g(x,y)*f(x,y) 
 

Therefore, E(XY) = ΣΣΣΣxΣΣΣΣy xyf(x,y) 
 

• For Example B above,  

E(XY) = (1)(0)(0.10) + (2)(0)(0.20) + (3)(0)(0.14) + (4)(0)(0.06) 

   + (1)(1)(0.04) + (2)(1)(0.10) + (3)(1)(0.22) + (4)(1)(0.14) = 1.46 

• For Example A above, verify that E(XY) = 5 

 

Definition: For RVs X and Y with joint pmf f(x,y), the covariance 

between X and Y, denoted σσσσXY, is equal to 
 

σσσσXY = Cov(X,Y) = E{(X - µµµµX)*(Y - µµµµY)} 
 

By Theorem 10.5, σσσσXY = E(XY) - µµµµX*µµµµY (Shortcut formula) 
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It follows that for Example B, σσσσXY = 1.46 – (0.5)*(2.62) = 0.15 and for 

Example A, σσσσXY = 5 – (2)*(2.5) = 0. 

 

By Theorem 10.5, the correlation between X and Y, denoted ρρρρXY, is 

equal to 

ρρρρXY = Corr(X,Y) = 
YX

XY

σσ

σ
 

 

So, to find the correlation (coefficient), we first find the covariance, 

then divide by the square root of the product of the variances.  If the 

covariance is zero, then so is the correlation.  So, for Example A,  

ρρρρ = 0 (we can omit the XY subscript since it is clear here).  For 

Example B,  ρρρρ = 0.15 / sqrt{0.25*0.9156} = 0.313522. 

 

Miscellany: 

• Theorem 10.1: E{*} is a linear operator 

• This is applied in the Corollary, E(K) = nππππ 

• Theorem 10.2: X and Y are independent IFF E(XY) = E(X)*E(Y) 

• Theorem 10.3: X and Y Independent ���� they’re uncorrelated 

• NOT vice versa! (So ‘Independence’ is “stronger”) 

• Correlation is only assessing LINEAR relationships 

• Linear combinations are discussed in Section 10.4 

• Var(X + Y) = Var(X) + 2Cov(X,Y) + Var(Y) 

• Var(X - Y) = Var(X) - 2Cov(X,Y) + Var(Y) 

• When X and Y are uncorrelated (which could result from their 

being independent), Var(X + Y) = Var(X - Y) = Var(X) + Var(Y) 

 

 


