Chapter 13 – Confidence Interval Estimation

Example 13.1 (p.352) – Demonstrates the difference between Sampling Theory (Chap.11) and Estimation Theory (Chap. 13). Bottle fill of this production process follows a Normal distribution with $\sigma = 0.01$ liters. Sampling theory pretends we know μ (the mean fill for the machine) and tells us what to expect for our \overline{x} of n = 6randomly chosen bottles. Here (*Estimation theory*), we instead learn how to set a confidence interval (CI) for μ . Here, $\overline{x} = 2.05$ liters, and since $\sigma_{\overline{x}} = \frac{0.01}{\sqrt{6}} = 0.00408$, the <u>95% CI for μ </u> is:

 $2.05 \pm 1.960 \times 0.00408$, or 2.05 ± 0.0080 , or (2.0420, 2.0580)

Had we wanted a <u>99% CI for μ </u>, we would obtain:

 $2.05 \pm 2.576 \pm 0.00408$, or 2.05 ± 0.0105 , or <u>(2.0395, 2.0605)</u>

And a <u>90% CI for μ </u> is 2.05 ± 1.645*0.00408, or <u>(2.0433, 2.0567)</u>

<u>Note</u> that the above CI's are predicated upon two very important assumptions: (1) that the parent population (of soda fills from this machine) is Normal, and (2) that σ is known and is known to equal 0.01. If we still keep the Normality assumption, but had we not known σ and obtained a *sample SD* of s = 0.01 ounces instead, we could find a <u>95% T-distribution CI for μ </u> in the following manner:

 $2.05 \pm 2.5706 \times 0.00408$, or 2.05 ± 0.0105 , or (2.0395, 2.0605)

Additional Notes:

(a) The 95% T interval is wider than the 95% Z interval, reflecting the uncertainty about σ

(b) The T interval uses $S_{\overline{x}} = \frac{s}{\sqrt{n}}$ in place of $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ (Z interval)

(c) The T interval uses $t_5 = 2.5706$ in place of z = 1.96.

<u>Understanding and interpreting CI's</u> – The text hints at a simulation study on pp.354-5 to help us understand the meaning of a given CI – let's look instead at today's H/O. 100,000 samples of size n = 6 are taken from a Normal distribution with $\mu = 2.03$ and $\sigma = 0.01$; the histograms on p.1 show that the sample means look Normal (but the sample SD's have a right skew). More importantly, for each sample, the corresponding 100,000 95% Z CI's and 95% T CI's are obtained and checked to see whether or not they contain the true value of $\mu =$ 2.03. In this simulation, 95.021% of the Z CI's contain the true value, and 95.047% of the T CI's contain the true value. *This is the correct way to understand confidence intervals* – *it is incorrect to say that there is a 95% chance that any one interval contains* μ .

<u>One-sided and two-sided CI's</u> – Although the symmetric two-sided CI's are the shortest ones with the given nominal coverage, confidence intervals can also be *one tailed*. Had we wanted a 95% Z CI above of the form (a, ∞) , we would obtain:

$$a = 2.05 - 1.645 * 0.00408 = 2.0433$$
, so CI is $(2.0433, \infty)$

Not surprisingly, the value of 'a' in this one-sided 95% CI is the left endpoint of the 90% CI given above.

<u>Choosing the sample size</u> – The margin of error (ME; "within") is defined as ME = $z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$ (bottom of p.368), so given that we know α and σ , we can find n (sample size) to keep ME below some threshold (E). Just choose $n \ge \left(\frac{z_{1-\alpha/2}\sigma}{E}\right)^2$. For example (pp. 367-8), for $\alpha = 5\%$ and $\sigma = 136.6$, to get the ME no larger than E = 25 hours ("within 25 hours of the mean"), we need a sample size of

n ≥
$$\left(\frac{z_{1-\alpha/2}\sigma}{E}\right)^2 = \left(\frac{1.96*136.6}{25}\right)^2 = 114.7 \Rightarrow$$
 n = 115.

2

<u>Confidence Intervals for a Binomial π – Here, when n is large*, the 95% CI for π is</u>

$$p \pm 1.960 * SE_p$$
 (*)

where p = y/n, and $SE_p = \sqrt{\frac{p(1-p)}{n}}$. For CI's of other levels (α 's), we would then use other Z values in place of '1.960' in equation (*).

<u>Aside</u>: This CI is used instead of the *more accurate CI*, $p \pm 1.960 * \sigma_{\pi}$ with $\sigma_{\pi} = \sqrt{\frac{\pi(1-\pi)}{n}}$, since obviously we don't know π in this formula. But, this more accurate CI suggests a so-called quadratic CI or Score CI for π (referenced on p.370); our point for raising this is that there is usually not only one method for finding a CI, although we will just use the method in equation (*).

Equation (*) simply substitutes p for π in the more accurate CI approach, and since this could be a big mistake, a *more conservative* idea is to put $\frac{1}{2}$ in place of π . When we do so, the 95% CI for p is:

$$\mathbf{p} \pm \frac{1.960}{2\sqrt{n}}$$
 (**)

Also, an upper bound (E) for the margin of error (within) is therefore $\frac{1.960}{2\sqrt{n}}$, so to get the margin of error at most E, we choose $n \ge \left(\frac{1.96}{2E}\right)^2$

Example 13.5. Here, y = 40 of n = 144 caught fish are bass, which gives p = 27.78% bass. Using the usual approach (*), $SE_p = 0.0373$, and the 95% CI of $0.2778 \pm 1.960*0.0373$ or (0.2046, 0.3509): we're 95% confident that the true percentage of bass in the lake is between 20.46% and 35.09%. Using the conservative approach (**), we get the 95% CI: 0.2778 ± 0.0817 or (0.1961, 0.3594), which is a little wider (more conservative). Finally, how large a sample size is needed to get the margin of error of the 95% CI at most 3%? Answer: 1068 fish. \rightarrow Skip Section 13.7.