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Chapter 15 – Correlation and Regression 
 

Now, we measure both an X (‘independent’ or ‘predictor’) and a Y 

(‘dependent’) variable – both RV’s – for each person or subject in a 

study.  In correlation analysis, we view both RV’s as varying together 

and wish to quantify the linear association between them.  More 

specifically, we assume that the couples (x,y) have a Bivariate Normal 

distribution, which entails five population parameters: µµµµx, σσσσx, µµµµy, σσσσy, 

and ρρρρ (the last one is the ‘population correlation coefficient’).  In 
regression analysis, on the other hand, conditional on X = x, we assess 

the linear association by fitting the expected line 
 

   E(Y/ X = x) = µµµµy/x = αααα + ββββx     (*) 
 

Here, we need to estimate the intercept (αααα) and the slope (ββββ).  We also 

need to estimate the standard error, σσσσy/x, associated with the expected 

mean line (*); this linear model requires that σσσσy/x does not vary with x. 
 

Scatter Plots – The first thing to do with bivariate data is to plot the 

data with the dependent variable on the y-axis and the independent 

variable on the x-axis.  In the handout (p.1), is the scatter plot of the  

n = 8 points plotting y = height (cm) versus x = age (months); note 

here the up-sloping linear association.  On p.2, we see the scatter plot 

for the n = 38 points for Example 15.2 (p.410), plotting y = mileage 

(mpg) versus x = car weight (pounds).  In the latter plot, there is a 

down-sloping (somewhat linear) relationship.  In Figure 15.3 on p.410, 

there does not seem to be any linear association. 
 

The Correlation Coefficient – We estimate the above population 

correlation coefficient (ρρρρ) with the sample counterpart (r) given by: 
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The calculation of r by hand is best done via a table such as Table 15.3 

on p.412, and coincides with the plots in Figures 15.5 and 15.6.  Note 

that the correlation coefficient (r) is positive when the trend is 

upward, negative when it’s downward, and always between –1 and 1. 

 

LSAT – Law School GPA Example.  Here n = 200 (students), r = 0.796 
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Scatterplot of GPA vs LSAT

 
 

Note the elliptical pattern in the data.  From this plot, we can ‘eyeball’ 

that x ≈ 660, y ≈ 3.4, sx ≈ 40, sy ≈ 0.25, and r ≈ 0.80.  Indeed, we have: 
 

Descriptive Statistics: LSAT, GPA  
Variable    N    Mean   StDev  Minimum  Median  Maximum 

LSAT      200  650.21   41.11   560.25  649.50   752.99 

GPA       200  3.3967  0.2544   2.8659  3.3971   4.1082 

 

Correlations: LSAT, GPA  
Pearson correlation of LSAT and GPA = 0.796 

 



 3

Whereas correlation analysis treats X and Y equally, regression treats 

Y as the dependent variable – and depending on X. 

 

Simple Linear Regression – Another way to express equation (*) is 

(conditional on observing x) 
 

yi = αααα + ββββxi + εεεεi      for i = 1 … n,  
 

where the εεεεi are called the error terms.  By assumption, we have that 

for all values of i = 1 … n, εεεεi ~ N(0 , σσσσe
2
); hence, yi ~ N(αααα + ββββxi , σσσσe

2
).  

From our discussion above, we realize that this is really a conditional 

statement (conditional upon X = xi).  Our next goal is to estimate and 

test hypotheses related to the parameter estimates of αααα, ββββ and σσσσe
2
; we 

do so using the principle of least squares.  Our objective function to 

minimize is the error sum of squares (SSE) function: 
 

SSE(αααα , ββββ) = ΣΣΣΣ    εεεεi
2
 = ΣΣΣΣ(yi - αααα - ββββxi)

2
    (**) 

 

Differentiating (**) with respect to (‘wrt’) αααα and ββββ, and then setting to 
zero, and solving will give us the LSE’s (least squares estimates), ‘a’ 

and ‘b’.  Differentiating wrt αααα, setting to zero, and solving gives: 
 

xbay +=            (NE1) 
 

This expression, called the first ‘normal equation’ (NE), implies that 

the regression line goes through the point of averages.  The second NE 

is obtained by differentiating wrt ββββ and setting to zero: 
 

ΣΣΣΣxiyi = a ΣΣΣΣxi + b ΣΣΣΣxi
2
          (NE2) 

 

Simultaneous solution of NE1 and NE2 gives the slope LSE formula: 
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Once this is obtained, we use (NE1) for find the intercept LSE (a). 
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The predicted values of the yi are iŷ  = a + bxi, and the residuals are 

then the difference between the actual and the predicted: ei = yi - iŷ .  

The residual sum of squares (the text and Minitab mistakenly call this 

SSE) is SSE = ΣΣΣΣ    ei
2
.  It is very important, then, to note the difference 

between errors and residuals: residuals are the actual differences 

between the actual and predicted y’s, whereas errors are never 

observed – in much the same way that the estimated slope (b) is 

observed and calculated and used to estimate the true slope (ββββ), which 
is never observed (unless the whole population is sampled).  Finally, 

our estimate of σσσσe
2
 is the mean square of the residuals,  

 

   se
2
 = SSE / (n-2)   

 

The square root of this term – which estimates σσσσe - is called the RMS 
of the residuals on p.423. 

 

Example 15.1 continued – we now calculate our estimates (LSE’s for 

αααα and ββββ and se
2
 for σσσσe

2
) by hand.  Note x = 54, y = 116, n = 8.  

Summing down columns, we get ( )( )∑ −− yyxx ii  = 3531, ( )∑ −
2

xxi = 3348, so  

b = 3531/3348 = 1.05466, a = 116 – 1.05466*54 = 59.0484, and the 

fitted line is iŷ  = 59.04839 + 1.05466 xi, giving us the last two columns. 
 

 x y x - x  y - y  (x - x )( y - y ) (x - x )2 ŷ  e 

1 24   87 -30 -29   870  900   84.36  2.64 

2 48 101  -6 -15     90    36 109.67 -8.67 

3 60 120   6   4     24    36 122.33 -2.33 

4 96 159  42  43 1806 1764 160.30 -1.30 

5 63 135   9  19   171     81 125.49  9.51 

6 39 104 -15 -12   180   225 100.18  3.82 

7 63 126    9  10     90     81 125.49  0.51 

8 39   96 -15 -20   300   225 100.18 -4.18 
 

Here, SSE = ΣΣΣΣ    ei
2
 = 211.997, so se

2
 = 211.997 / 6 = 35.333 = 5.944

2
. 
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Predictions – The text makes a good point on pp.428-9 (for this 

example) in that when prediction of y = height is made with no x = age 

information, our prediction is y = 116 cm, with SE of sy = 23.71 cm.  

On the other hand, with the information that x = 60 months, the 

(regression) predicted value is ŷ = 122.33 cm, with SE of se = 5.944.  

Note the huge drop in the SE! 
 

As we can see from the handout, Minitab reports the SSE under 

‘Residual Error SS’, se
2
 (often called the MSE for ‘mean square 

error’) under ‘Residual Error MS’, se under ‘S’, it gives the LSE’s 

(along with some t-tests and p-values), and it also gives and ‘Analysis 

of Variance’ or ANOVA table.  At the bottom of this table is the 

‘Total SS’ – more correctly called the corrected total SS – which is 

equal in general to SST = ( )∑
=

−
n

i

i yy
1

2

.  The Lemma on p.429 shows that 

SSE = (1 - r
2
) SST.  Usually, ‘r

2
’ is expressed as ‘R

2
’, so that  

 

R
2
 = 

SST

gSS Re
,  

 

where SSReg (Regression SS) = SST – SSE.  In the above example 

(and handout), note that 3724.0 / 3936.0 = 0.94614, which corresponds 

with the reported value of R
2
.  The usual interpretation of R

2
 is ‘the 

proportion of the total variability that is explained by the regression 

line’.  Finally, Theorem 15.3 establishes that 
 

se = sy
21 r−

2

1

−

−

n

n
   ≈ sy

21 r−  (for large n). 

 

In the above example (where n = 8 is not large), we have 
 

5.944 = 23.713
29727.01−

6

7
, 

which is correct. 

 

Read 15.7 to understand ‘the regression paradox’. 
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Hypothesis Testing (section 15.8) – Paramount is the test of whether 

the linear regression line is flat (ββββ = 0) or that there is zero correlation 

between X and Y (ρρρρ = 0), and these parameters are related by the 
equation: 

      ββββ = ρρρρ 
x

y

σ

σ
 

 

It follows that a hypothesis of zero correlation can be tested by testing 

for zero slope; remembering that the LSE for ββββ is b, for this latter test, 
though, we need to find the SE associated with b, SEb.  On p.435 

bottom, it is shown that b is a linear combination of the (independent) 

yi’s, from which Theorems 15.4 and 15.5 result.  The first shows that b 

is an unbiased estimate of ββββ.  The latter theorem shows that  
 

Var(b) = ( )2
2

∑ − xxi

eσ
 

 

Since we don’t know σσσσe
2
, we’ll use se

2
 in its place: 

    SEb = ( ) 2

1
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In the above example, SEb = (1.0547/0.9727) 605385.0×  = 0.10273.  

Now, we have all the ingredients to find a CI for the true slope (ββββ) or 
test hypotheses related to it.  Since the degrees of freedom associated 

with it are (n – 2), if we want the 95% CI for ββββ, the relevant t-value for 
this example is t0.975 = 2.4469, so the CI is: 
 

1.0547 ± 2.4469*0.10273 = 1.0547 ± 0.2514 or (0.8033,1.3061) 
 

We’re 95% confident that the true slope lies between these values. 

 

Beware: correlation is not causation! (Section 15.9) 


