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Chapter 16 – Categorical Data Analysis 
 

Imagine that we walk into our local casino and examine the suits of 

the 208 cards in a stack of 4 decks of cards and we find 43 ♠, 59 ♣,  

60 ♥, and 46 ♦.  Is this unusual?  What if we walk to a neighboring 

Genetics lab where white (W) and yellow (Y) summer squash have 

been crossed to test the 12:3:1 genetic theory, and which produce the 

data: 1550 W, 400 Y and 100 G (green)?  Does this theory apply for 

these data?  Which test can be used to test the underlying hypotheses? 

 

First, note that these are count data; in the first case, we have c = 4 

categories and in the second case, we have 3.  We therefore extend the 

Binomial distribution to the Multinomial distribution, which has pdf: 
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In this expression, the ππππ’s are the probabilities of falling in the c 
respective categories (so they are non-negative and sum to one); also, 

the k’s are the numbers falling in the respective categories (so they 

sum to n).  Thus, the null hypotheses for the above examples are 

H0: ππππ1 = ππππ2 = π π π π3 = π π π π4 = ¼ and H0: ππππ1 = 12/16, ππππ2 = 3/16 and ππππ3 = 1/16 
respectively.  It turns out that for these tests the TS has the chi-square 

(χχχχ2) distribution with νννν df (degrees of freedom), and the pdf is: 
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ΓΓΓΓ(*) is the usual gamma function, and graphs of the χχχχ2 pdf are given 

on p.449 (bottom) for df = νννν = 5, 10 and 20.  What distribution does 

this reduce to for df = νννν = 2?  Also, in a math-stats class, we prove that 

the χχχχ2 distribution with df = νννν = 1 is identical to the square of the 
standard normal: Z2 = χχχχ1

2.  From Table 6 (p.513), note 3.8415 = 1.962.  

This only works for the first row of this table – i.e., for df = νννν = 1.  
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Whereas the rejection region (RR) for the Normal distribution lies in 

2 tails, for the chi-square distribution, the RR is only in the right tail. 

 

Chi-square tests are in very widespread use, so – as for the Normal 

case – instead of using the above pdf, we use the chi-square table 

(Table 6) extensively.  Students are often under the mistaken 

impression that there is one ‘chi-square test’ and this is incorrect.  In 

Chap. 16 alone, the relevant TS has a chi-square distribution for both 

the Goodness of Fit (GOF) tests and for tests associated with 

contingency tables.  Bear in mind that many other applications of chi-

square tests lay beyond this introductory course material. 

 

16.3. Testing Goodness of Fit – the relevant TS here is of the form: 
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where c is the number of categories, Ok and Ek are the observed and 

expected (assuming H0) values for the k
th category, and the relevant df 

here is n = c - 1.  Returning to our above casino example, note that 

since H0 is ππππ1 = ππππ2 = ππππ3 = ππππ4 = ¼  (the casino deck is fair), we have: 

νννν = 3; O1 = 43, O2 = 59, O3 = 60, O4 = 46; E1 = E2 = E3 = E4 = 52, so the 

TS is 
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Since from Table 6 the p-value is between 0.10 and 0.25 (actual p-

value is 0.2193), we retain the claim that the deck is fair.  For the 

summer squash example, we have: νννν = 2; O1 = 1550, O2 = 400, O3 = 

100; E1 = 1537.5, E2 = 384.375, E3 = 128.125, so the TS is 
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Here, 0.025 < P < 0.05 (actual p-value is 0.0316), so at the 5% αααα level, 
we reject the claim that the genetic theory applies to this variety of 

summer squash – perhaps it is a mutant variety. 

 

Note that for GOF tests, the values of the ππππ’s are specified by H0 – that 

is, neither the ππππ’s nor anything else must be estimated.  An interesting 

extension of GOF tests is provided next (see Section 16.6). 

 

Example - Researchers gather the data in the following table related 

to the number of lifetime offspring produced by 1000 randomly 

selected F birds of the species petit oiseau, and wonder if the Poisson 

distribution would provide a reasonable model fit to these data. 

 

Number of 

Offspring 

Count Estimated 

Probability 

Expected 

Value 

Contrib. to 

the TS 

0 249 0.240028 240.028 0.33537 

1 328 0.342520 342.520 0.61551 

2 254 0.244388 244.388 0.37806 

3 105 0.116247 116.247 1.08819 

4 49 0.041471 41.471 1.36681 

5 11 0.011836 11.836 0.05903 

6 3 0.002815 2.815 0.01216 

7 1 0.000574 0.574 0.31646 

 

Assume that the Poisson distribution fits these data.  We can estimate 

the mean (λλλλ) with the (weighted) sample mean here – thus, λ̂  = 1.427.  

Next, let’s use this value to obtain the ‘estimated probabilities’ via the 

Poisson pmf, then multiply these probabilities by 1000 to get the 

‘expected values’, and finally calculate the TS.  Here, χχχχs
2 = 4.1716; 

what is the relevant ‘df’ here?  It’s not c – 1 = 7 since we first had to 

estimate λλλλ to perform the above calculations: rather, νννν = c – 1 – 1 = 6.  
Then, the p-value is between 0.25 and 0.90, and we retain the Poisson 
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fit to these data.  This is indeed a variation on the GOF test – we’re 

testing whether the Poisson distribution fits our data but we are first 

estimating a model parameter (and take account of that estimation by 

reducing our ‘df’) – had we estimated two parameters, we would have 

reduced our ‘df’ by two, etc.  Also, there’s nothing special about the 

Poisson distribution – we could fit any distribution to data and test for 

GOF, remembering to deduce the ‘df’ for all estimated parameter(s). 

 

16.4.  Testing Association via Contingency Tables 
 

Now, we consider two variables measured on each individual, but – in 

contrast with Chapter 15 – here we simply count the number of 

individuals falling into the cells of a “contingency table”. 
 

For example, premature babies who suffer from respiratory disease 

have always been given the conventional ‘CMT’ treatment.  There is 

now a new ‘ECMO’ treatment and our goal of the following study is 

to test whether the survival rates differ for the two treatments.  The 

data are in the following table (ignore the (blue) numbers for now). 
 

  Survival  

  Yes No Total 

ECMO 18 (14.8) 2 (5.2) 20 Treatment 

CMT 19 (22.2) 11 (7.8) 30 

 Total 37 13 50 

 

Denote the true survival probability for the ECMO group by ππππ1 and 
the survival probability for the CMT group by ππππ2.  Then, H0 is ππππ1 = ππππ2 
or equivalently that the variables ‘Treatment’ and ‘Survival’ are 

independent; also, HA is ππππ1 ≠ ππππ2 or equivalently that ‘Treatment’ and 

‘Survival’ are dependent.  Our sample estimates here are p1 = 18/20 = 

0.90 and p2 = 19/30 = 0.63 – is this enough evidence to reject H0?  To 

perform the significance test, we have two options here: (A) the χχχχ2 test 

(Chap. 16, p.457) and (B) the z-test (Chap. 14, pp. 398-9). 
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A. The χχχχ2 test involves first finding the expected cell counts (Eij) 

assuming independence and comparing these values with the observed 

cell counts (Oij).  The expected cell counts are easily obtained by 

multiplying the row and column totals and dividing by n – they’re 

given above in (blue).  We then form the TS: 
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This TS has the χχχχ2 distribution with νννν = (r-1)× (c-1).  In the above 2x2 
example, since r = c = 2, νννν = 1; also, the TS is: 
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In Minitab: 
 

Chi-Square Test: survive, dont  
 
Expected counts are printed below observed counts 

Chi-Square contributions are printed below expected counts 

 

       survive   dont  Total 

    1       18      2     20 

         14.80   5.20 

         0.692  1.969 

 

    2       19     11     30 

         22.20   7.80 

         0.461  1.313 

 

Total       37     13     50 

 

Chi-Sq = 4.435, DF = 1, P-Value = 0.035 

 

Since p = 0.035 < 5%, we reject H0 and conclude that Treatment and 

Survival rate are associated or equivalently that the survival rates differ 

for the two treatments. 
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B. The Z test approach works with the sample proportions (p1 = 0.90 

and p2 = 0.63) and also with p = 37/50 = 0.74.  Note that, assuming H0 

is true (so ππππ1 = ππππ2 = ππππ), p is our estimate of ππππ.  Then the TS is (p. 399): 
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Then, the p-value is 2*Pr{Z > 2.10599} = 0.0352 (same as above).  

Indeed, we will get the same results since zs
2 = 2.105992 = 4.435 = χχχχs

2. 
 

The above (Z) methodology also indicates how we can test for a one-

sided alternative hypothesis for a 2x2 contingency table (Section 16.5): 

just use the Z approach and do not double the probability to get the p-

value.  Thus, in the above example, if we wanted to test whether the 

survival rate for the new ECMO treatment is better than the survival 

rate for the old CMT treatment (H0: ππππ1 = ππππ2 versus HA: ππππ1 > ππππ2), then 
we obtain the same zs value (2.10599), and the p-value is Pr{Z > 

2.10599} = 0.0176.  Alternatively, we could do the χχχχ2 test (in A) and 

half the reported p-value to get the one-sided p-value (since the χχχχ2 test 

always tests for a difference in the alternative hypothesis). 
 

Testing a one-sided alternative hypothesis is possible only in 2x2 

tables – not in larger tables (see below).  Before we leave 2x2 tables, 

we point out that important measures reported in biomedicine are the 

relative risk (RR), ππππ1 / ππππ2, and the odds ratio (OR); estimation and 

testing methods for RR and OR are discussed in subsequent courses. 

 

There’s nothing sacred about 2x2 tables.  For example, researchers 

have established a relationship between blood type and incidence of 

ulcers using the data on the next page (Witmer, p. 433).  Here, the null 

hypothesis is that blood type and ulcer incidence are independent, and 

the alternative is that they are associated.  Since calculation of the 

expected counts and TS is arduous, we use Minitab to obtain χχχχs
2. 
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Blood Type Ulcer Patients Controls 

O 911 4578 

A 579 4219 

B 124 890 

AB 41 313 

Total 1655 10000 

 

Minitab χχχχ2 test results: 

 
Chi-Square Test: ulcer, control  
 

Expected counts are printed below observed counts 

Chi-Square contributions are printed below expected counts 

 

        ulcer  control  Total 

    1     911     4578   5489 

       779.43  4709.57 

       22.208    3.675 

 

    2     579     4219   4798 

       681.31  4116.69 

       15.364    2.543 

 

    3     124      890   1014 

       143.99   870.01 

        2.774    0.459 

 

    4      41      313    354 

        50.27   303.73 

        1.709    0.283 

 

Total    1655    10000  11655 

 

Chi-Sq = 49.016, DF = 3, P-Value = 0.000 

 

Note that the TS here has (4 - 1)*(2 - 1) = 3 degrees of freedom.  Since 

the p-value is tiny (p < 0.0001), we conclude that blood group and ulcer 

status are related.  Here, ‘related’ is synonymous with ‘dependent’ or 

‘associated’.  This analysis allows us to go one step beyond and notice 

that it’s not the ‘B’ and ‘AB’ blood groups but rather the ‘O’ and ‘A’ 

blood groups that differ for ulcer status. 


