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Chapter 9 – Waiting Time Random Variables 
 

Here, we look at two discrete distributions (Geometric and Poisson) 

and one continuous distribution (Exponential) in greater depth. 

 

Geometric RV’s – In Chapter 4 (p.126 ff) we looked at one variant – 

here, we look at another one.  Here, T = number of trials until the first 

success; previously, X = number of failures until the first success.  The 

pmf for T is 

fT(t) = ππππ (1 - ππππ)t-1, t = 1, 2, 3 …, 
 

where ππππ is the ‘success’ probability (for a single trial); fT(t) = 0 for all 
other values of t.  It follows that the cdf of T is F(t) = Pr{T ≤ t} =  

1 - (1 - ππππ)t, and the survival function of T is S(t) = Pr{T > t} = (1 - ππππ)t.  
We use this latter function to show that any Geometric RV exhibits 

the memory-less property: Pr{T > s + t | T > s} = Pr{T > t}.  The result 

is actually ‘IFF’ in the sense that in addition if a discrete RV has the 

memory-less property, then it must be a Geometric RV. 
 

For T a Geometric RV, it is easy to show (pp. 244-5) that E(T) = 1 / ππππ 
and Var(T) = 

2

1

π

π− .  The proofs use the infinite sum (and other derived 

infinite sums) we gave at the end of the Chapter 4 Notes.  

 

Exponential RV’s – In Chapter 7, we defined T as having the 

Exponential (θθθθ) distribution (written T ~ EEEE(θθθθ)) provided its pdf is 

f(t) = 
θ

θ
/1 te−  for t > 0 

 

The unknown parameter is θθθθ > 0.  We also showed there that the cdf is 

F(t) = Pr{T ≤ t} = 1 – e
-t/θθθθ, for t > 0.  Hence, the survival function is  

S(t) = Pr{T > t} = e
-t/θθθθ for t > 0.  It is simple then to show that the 

Exponential distribution also follows the memory-less property – it is 

the only continuous RV with this property (proof on p.248).  We also 

showed previously that E(T) = θθθθ and var(T) = θθθθ2. 
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Poisson RV’s – The discrete RV Y has the Poisson(λλλλ) distribution if it 
has the pmf 

fY(y) = 
λλ −e

y

y

!
, y = 0, 1, 2, 3 …, 

 

and we write Y~ P(λλλλ).  In order to prove that this pmf sums to one, we 

need to remind ourselves of the result from Calculus: e
z
 = ∑

∞

=0 !k

k

k

z
.  We 

also use this result to show that E(Y) = λλλλ and E(Y2
) = λλλλ2 + λλλλ; hence, 

var(Y) = λλλλ.  It’s kind of interesting that this distribution has just one 
parameter (λλλλ), and it is both the mean and the variance. 
 

In the last chapter, we used the Normal distribution to approximate 

the Binomial distribution, but another approximation of the Binomial 

distribution can be obtained from the Poisson distribution – provided 

again that n is large and ππππ is small.  Equating means, we set λλλλ = nππππ.  A 
general rule (p.255) says that the approximation is excellent for  

n ≥ 100 and λλλλ = nππππ ≤ 5, and is very good for n ≥ 100 and λλλλ = nππππ < 10. 
 

Example 9.5 (p.256) – First Aid.  There are n = 2000 spectators and 

the chance that any one individual needs first aid is ππππ = 0.001 (one in a 
thousand).  Let’s use the Poisson distribution to approximate the 

probability that at least 3 spectators need first aid treatment.  Here,  

λλλλ = nππππ = 2, so the Poisson approximation should be excellent.  We 

want Pr{K ≥ 3} = 1 – Pr{K ≤ 2} ≈ 1 – Pr{Y ≤ 2} (with Y ~ P(λλλλ = 2)) =  
1 – {e

-2
 + 2e

-2
 + 2e

-2
} = 1 – 5e

-2
 = 0.3233 or 32.33%.  See p.256 to see 

how close this approximation is to the true value. 

 

On p.257, two recursion relations are given as is a theorem justifying 

the Poisson approximation to the Binomial distribution.  The proof of 

this result is based on the important limit from basic Calculus: 
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Also, the Exponential and Poisson distributions are connected via the 

following (p.260): 
 

Theorem 9.8 – Let T be an exponential random variable of waiting 

times for an event with mean waiting time of θθθθ units.  Let Y be the 
count of events that occur in a unit of time, [0 , 1].  Then, Y has a 

Poisson distribution with mean λλλλ = 1 /    θθθθ. 
 

A nice application is given in Example 9.6. 


