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Chapter 1 – Probability 
 

Statisticians help us make intelligent decisions (statistical inference) 

and model complex phenomena, and probability is the “language of 

statistics”.  Note that the scientific method is indeed an “endless cycle” 
 

The outcome space (denoted OOOO) is a listing of all outcomes of an 

experiment; some examples are on p.3.  An event (e.g., denoted A) is a 

collection of such outcomes so A Ã OOOO.  Important definitions related to 

the null set, subsets, unions, intersections, and complements are given 

on p.3, and the pictures on p.4 are helpful to visualize these.  Events 

are mutually exclusive if they are pairwise disjoint, and they are 

exhaustive if their union is the whole space OOOO.  Probability is defined 

on p.4 as the limit of a relative frequency. 
 

Example 1.1-7 on pp.4-5 illustrates probability, and we perform our 

own simulation with the following program and graph. 
 

data one; 

  sumy=0; 
  do nn=1 to 500; 
    sumy=sumy+ranbin(1234321,1,(31031/46656));  

    pct=sumy/nn; 
    output; 

  end; 
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Here, a die is thrown 6 times (labeled trials k = 1, 2 … 6) and a 

“Success” occurs at least one of {trial k results in a roll of k} occurs.  

The probability of this happening is 1 – (5/6)6 = 31031/46656 = 0.665, 

and this process is repeated n = 500 times.  Notice in the above graph 

(as on p.5), the relative frequencies approach this limit – although not 

uniformly.  Probability is a long-run phenomenon.  Example 1.1-8 

provides another illustration. 

 

Probability is rigorously defined on p.6: it is a real-valued set function 

P that assigns to each set A the number P(A) and is such that 

(a) P(A) ≥ 0 

(b) P(OOOO) = 1 

(c) For (at most countably infinite) pairwise disjoint events A1, A2, 

A3 … (so that all Ak … Am = 0), we have 
 

P(A1 » A2 » A3 » …) = P(A1) + P(A2) + P(A3) + … 

 

Several results follow including the following six theorems. 

 

Theorem 1.1-1.  For all events A, P(A′) = 1 – P(A), where A′ is the 

complement of A. 
 

Theorem 1.1-2.  The probability of the null set is zero: P(Ø) = 0. 
 

Theorem 1.1-3.  For all events A and B such that A Ã B, P(A) ≤ P(B). 
 

Theorem 1.1-4.  For all events A, we have that P(A) ≤ 1. 
 

Theorem 1.1-5.  For all events A and B, we have that  
 

P(A » B) = P(A) + P(B) - P(A … B) 
 

Theorem 1.1-6.  For all events A, B and C, we have that  
 

P(A » B » C) = P(A) + P(B) + P(C) - P(A … B) - P(A … C)  

- P(B … C) + P(A … B … C) 
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To illustrate Theorem 1.1-5, work through Exercise 1.1-3 (a) – (c) on 

p. 10.  Other illustrations are Examples 1.1-10 and 1.1-11. 

 

The equally likely idea on p.9 is very intuitive and demonstrated in 

Exercise 1.1-9 on p. 11. 

 

Enumeration Methods (Section 1.2, pp. 11-17) 
 

When considering enumerating different combinations, the 

multiplication principle is easily demonstrated using probability trees 

(although these are sometimes impractical).  Here, ‘n factorial’ is 

defined as n! = n(n-1)…(2)(1) for n ≥ 1 and as 0! = 1. 

 

If we have n different objects, then each of the n! arrangements in a 

row of the n objects is called a permutation of the n objects.  For 

example, the 4! = 24 permutations of {A , B , C, D} are  
 

ABCD ABDC ACBD ACDB ADBC ADCB 

BACD BADC BCAD BCDA BDAC BDCA 

CABD CADB CBAD CBDA CDAB CDBA 

DABC DACB DBAC DBCA DCAB DCBA 
 

If there are only r ≤ n positions, then the number of possible ordered 

arrangements (called a permutation of n objects taken r at a time) is 

nPr = n(n - 1)(n - 2) … (n - r + 1) = 
)!(

!

rn

n

−  

So, in the above example with n = 4, if there are only r = 2 positions, 

then the number of possible ordered arrangements is 24/2 = 12; in the 

above list, these twelve arrangements are  
 

AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC 
 

When order is not relevant – for example, in the above list if AB and 

BA are really the same occurrence – then we need to consider 

combinations.  From Definition 1.2-6 on p.14, each of the nCr 
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unordered subsets is called a combination of n objects taken r at a 

time; here 

nCr = )!(!

!

rnr

n

r

n

−
=







 

 

In the above illustration, there are 4C2 = 6 combinations of n = 4 

objects taken r = 2 at a time – these are AB, AC, AD, BC, BD, CD.  As 

discussed on p.15, the numbers nCr are called binomial coefficients 

and come from the expansion of (a + b)n in powers of ‘a’ and ‘b’.  Note 

also Definitions 1.2-3 (ordered sample of size r), 1.2-4 (sampling with 

replacement), 1.2-5 (sampling without replacement), and 1.2-6 

(combination of n objects taken r at a time). 

 

Work through the 13 examples in this section and Ex. 1.2-7 and 1.2-9. 

 

Conditional Probability (Section 1.3, pp. 18-25) 
 

Consider Example 1.3-1 (p.19) regarding tulips. 

 

 Early (E) Late (L) Total 

Red (R) 5 8 13 

Yellow (Y) 3 4 7 

Total 8 12 20 
 

Note that this table is conveying that the probability that a randomly 

selected tulip of this type is both Red and blooms Early is P(R … E) =  

5 / 20 = 25%, that one such tulip is Red is P(R) = 13 / 20 = 65%, that 

one such tulip blooms Early is P(E) = 8 / 20 = 40%, and that one such 

tulip is Red given that it blooms Early is P(R / E) = 5 / 8 = 62.5%.  This 

latter probability is called a conditional probability, and the following 

rule holds in general (provided P(B) ≠ 0): 
 

P(A / B) = )(

)(

BP

BAP I
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Example 1.3-3 and Figure 1.3-1 (p.20) help to visualize conditional 

probability.  Also, on p.21, it is shown that conditional probabilities 

follow the axioms of a probability function, and the proofs follow 

directly from results for unconditional probabilities. 

 

A direct consequence of the above definition is the multiplication rule: 
 

      P(A … B) = P(A) × P(B / A) = P(B) × P(A / B) 
 

Also, by extension, 
 

     P(A … B … C) = P(A) × P(B / A) × P(C / A … B) 
 

(and so on). 

 

To illustrate, in the above if there are 20 tulips in a box and we 

randomly select two of them without replacement, then the probability 

that they are both red is: 
 

%05.41
19
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20
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Note that (a) this is slightly less than the answer we would obtain 

‘with replacement’: (0.65)2 = 42.25%, and (b) another way to get this 

answer using the results of the previous section is via 
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Good illustrations are Examples 1.3-6 and 1.3-7 on p.23 and Examples 

1.3-11 and 1.3-12 on pp.24-25.  Example 1.3-10 on p.24 is easily solved 

using probabilities trees; we’ll return to this example after we 

consider Bayes Theorem in Section 1.5 below. 

 

Independent Events (Section 1.4, pp. 27-31) 
 

This is analogous to sampling with replacement (or sampling from an 

infinitely large population).  Events A and B are independent if the 

occurrence of one of them does not affect the probability of the 
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occurrence of the other, i.e., if P(A / B) = P(A); note that P(A / B) = 

P(A) implies that P(B / A) = P(B).  A direct consequence of this (and an 

alternate definition of independence) is that events A and B are 

independent if P(A … B) = P(A) × P(B).  Note that by Theorem 1.4-1, 

independence of A and B carries over to A′ and B′. 

 

As Example 1.4-4 on p.29, care needs to be exercised with three 

events:  events A, B and C are independent if they are pairwise 

independent and if P(A … B … C) = P(A) × P(B) × P(C). 

 

To illustrate, note that we used the multiplication rule for 

independent events in our simulation example on p.1 of these notes 

(Example 1.1-7); see Example 1.4-6 on p.30.  For another illustration, 

in Example 1.4-8,  

• the probability of exactly one defect detected is P(1) = 0.001376 
• the probability of exactly two defects detected is P(2) = 0.067224 
• the probability of exactly three defects detected is P(3) = 0.931392 

We can find the probability of at least one defect by adding these 

three numbers or (better yet) by the calculation: 
 

1 – (0.01)×(0.02)×(0.04) = 0.999992 
 

Example 1.4-9 on p.31 is interesting and is hinting at the Binomial 

probability distribution introduced and illustrated on p.59ff. 

 

Bayes’s Theorem (Section 1.5, pp. 33-36) 
 

In Example 1.5-1, we consider three bowls (B1, B2, and B3) with Red 

(R) and White (W) chips in them: 
 

      | 2R   4W |   | 1R   2W |  | 5R   4W | 

  B1 (1/3)     B2 (1/6)     B3 (1/2) 
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Also, the probabilities that we select the respective bowls are above in 

RED; these probabilities are called the prior probabilities for the 

respective bowls. 
 

Let’s find the probability that a randomly selected chip is RED (with 

no knowledge of which bowl it came from).  This is best-done using 

probability trees, and turns out to equal 4/9. 
 

Next, imagine that we were told that a randomly chosen chip is RED, 

and we are asked to calculate the conditional probabilities associated 

with each of the three bowls.  We do this using the conditional 

probability rules of Section 1.3.  For example, 
 

P(B1 / R) = )/()()/()()/()(

)/()(

332211

11

BRPBPBRPBPBRPBP

BRPBP

×+×+×

×
 

 

The denominator in this calculation is just the P(R) = 4/9 that we 

found above.  Then, we get P(B1 / R) = ¼ = 0.25, P(B2 / R) = 1/8 = 0.125, 

and P(B3 / R) = 5/8 = 0.625; these are called the posterior probabilities 

(i.e., given that the chip is RED).  Note that they have changed from 

the prior probabilities given above.  The probability associated with 

the third bowl (B3) has increased since it has more RED chips. 

 

In general, if the events B1, B2 … Bm constitute a partition of OOOO – so 

that they are pairwise disjoint and their union is OOOO – and we are given 

the prior probabilities P(Bk) for all k and if we know for event A all 

conditional probabilities P(A / B1), then the posterior probabilities can 

be calculated using Bayes’s theorem: 
 

P(Bk / A) = 
∑
=

×

×
m

j

jj

kk

BAPBP

BAPBP

1

)/()(

)/()(

 

Applications of Bayes’s theorem in medicine are widespread as in 

Example 1.5-3 on pp.35-36.  The sensitivity of this test is 84% and the 

specificity of the test is 81%. 


