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Chapter 2 – Discrete Distributions 
 

We’ll spend 6 classes on this 56-page chapter, and the results given 

herein for discrete distributions will be extended to continuous 

distributions in the next chapter (where sums will be replaced by 

integrals). 
 

Discrete Probability Distributions (Section 2.1, pp. 40-47) 
 

A box contains 10 chips: one [1], two [2]’s, three [3]’s and four [4]’s.  

If we choose one chip from this box, the outcome space is S = {[1], [2], 

[3], [4]}.  Now define the random variable X which yields  

• the number 1 for the face [1] 

• the number 2 for the face [2] 

• the number 3 for the face [3] 

• the number 4 for the face [4] 

Then, assuming the chips are each equally likely, we would assign the 

probability 
10

1
 with the occurrence {X = 1}, the probability 

10

2
 with 

the occurrence {X = 2}, etc.  Next, define the probability mass function 

(denoted ‘pmf’) in general as f(x) = P(X = x).  In this case, the pmf is: 
 

    f(x) = 
10

x
 for x = 1, 2, 3 and 4. 

 

The graph of the probability histogram is on p.41 (dashed curve): here, 

f(1) = 0.10, f(2) = 0.20, etc.  This is an example of a discrete distribution 

since the support of x is finite (at most countably infinite is okay); in 

the next chapter, we’ll consider continuous distributions, which have 

an uncountably infinite support. 

 

Quite different from the above theoretical pmf result, the text also 

reports the result of a sample of size n = 1000 from this population 

which results in the frequencies 98, 209, 305, 388 for x = 1, 2, 3, 4.  

These sample results give the relative frequency function h(1) = 0.098, 
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h(2) = 0.209, h(3) = 0.305, h(4) = 0.388 (very close to the pmf results 

given above) and graphed on p.41 via the darkened histogram.  Note 

that in both cases, ΣΣΣΣf(x) = ΣΣΣΣh(x) = 1. 

 

Some Definitions.  The (theoretical) mean or expected value associated 

with the random variable X with pmf f(x) is µµµµ = ΣΣΣΣxf(x), where the sum 

is over all values of x.  The sample mean is x = ΣΣΣΣxh(x); another way to 

write this latter expression is:  
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Whereas the mean is a good measure of center of a distribution, the 

spread of the distribution can be assessed by finding its variance (σσσσ2
).  

The variance is obtained as follows: σσσσ2
 = ΣΣΣΣ(x - µµµµ)

2
f(x), and the short-cut 

formula is σσσσ2
 = ΣΣΣΣx

2
f(x)  – µµµµ2

.  Although the sample ‘MLE’ counterpart 

is νννν = ΣΣΣΣx
2
h(x) –

2x ,we will instead use the sample variance: 
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Finally, the r
th
 moment about the origin is ΣΣΣΣx

r
f(x), so µµµµ is the first 

moment about the origin, and ΣΣΣΣx
2
f(x) = σσσσ2

 + µµµµ2
 is the second moment 

about the origin.  Definition of the r
th
 sample moment about the origin 

is straightforward. 

 

For the above example, the mean is µµµµ = 1×0.1 + 2×0.2 + 3×0.3  

+ 4×0.4 = 3.0.  The second moment about the origin is 1
2
 ×0.1  

+ 2
2×0.2 + 3

2×0.3 + 4
2×0.4 = 10.0, so the variance is σσσσ2

 = 10.0 – 3.0
2
  

= 1.0.  On the other hand, the sample mean is x = 1×0.098 + 2×0.209 

+ 3×0.305 + 4×0.388 = 2.983.  Also, at the bottom of p.43, the authors 

demonstrate that the sample variance is 
2s = 0.990. 
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Example 2.1-1 on p.44 is notable since it shows that the mean µµµµ = 3.5 

does not need to be one of the support values of x.  Example 2.1-3 is 

relevant since for the pmf with X, σσσσX = 3/2 , whereas for the pmf of 

the more spread-out Y, σσσσY = 3/22 (twice as much as for X) – thus, σσσσ 

does indeed capture the spread.  Example 2.1-5 on pp.45-7 illustrates 

the Geometric distribution (see p.64).  In order to prove the pmf 
 

f(x) = (1/3)× (2/3)
x-1

, x = 1, 2, 3, …  
 

is a valid pmf and to find the mean and variance, we need to recall 

from Calculus that for –1 < z < 1,  

     1 + z + z
2
 + z

3
 + … = 

z−1
1

 

  1 + 2z + 3z
2
 + 4z

3
 + … = 2)1(

1

z−  

1 + 2
2
z + 3

2
z

2
 + 4

2
z

3
 + … = 3)1(

1

z

z

−
+

 

 

For Example 2.1-5, the mean is µµµµ = 3 and variance is σσσσ2
 = 6 = 2.45

2
, so 

the expected number of rolls of the die until the first [5] or [6] is three 

(3) give or take 2.45 rolls. 

 

Expectations (Section 2.2, pp. 49-57) 
 

As pointed out in the previous section, the (theoretical) mean of a 

distribution associated with the RV X is also called the expected value 

of X; it is denoted E(X) and µµµµ.  The Remark on p.50 shows that the 

mean µµµµ does not always exist (since the series 1 + ½ + ⅓ +… diverges); 

the authors also find the value of ‘c’ to make this a valid pmf. 

 

We can find the expected value of any real-valued function u(x) by: 
 

E[u(X)] = ΣΣΣΣu(x)f(x), 
 

where the sum is again over all values of x. 
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Results (pp.52-53). 
 

1. For the constant k, E(k) = k 

2. E[kv(X)] = kE[v(X)] 

3. E[k1v1(X) + k2v2(X)] = k1E[v1(X)] + k2E[v2(X)] 

4. The previous results generalizes: E[ΣΣΣΣkmvm(X)] = ΣΣΣΣkmE[vm(X)], 

and thus the expectation operator E is a linear operator. 

5. For RVs X and Y with respective means µµµµX and µµµµY and such that 

Y = aX + b, we have µµµµY = aµµµµX + b and σσσσY
2
 = a

2σσσσX
2
. 

6. On p.81, we’ll show that if X1, X2, … Xn are independent RVs 

such that the mean and variance of Xk are µµµµk and σσσσk
2
 for k = 1…n 

and X = a1X1 + a2X2 + … + anXn, then µµµµX = a1µµµµ1 + a2µµµµ2 + … + anµµµµn 

and σσσσX
2
 = a1

2σσσσ1
2

 + a2
2σσσσ2

2
 + … + an

2σσσσn
2
. 

 

Some applications are given on pp.52-53.  Another application is to let 

the independent RVs X1, X2 … Xn have a Bernoulli distribution, which 

assigns the probability p to x = 1 and the probability q = 1 - p to x = 0.  

Thus, for each Xk, µµµµ = 1×p + 0× (1-p) = p; since E(X
2
) = 1

2×p  

+ 0
2× (1-p) = p, the variance is σσσσ2

 = p – p
2
 = p(1 - p).   

 

Our interest here is in the RV X = X1 + X2 + … + Xn, which counts the 

number of “successes” in the n independent Bernoulli trials; X has a 

Binomial distribution with parameters ‘n’ and ‘p’ – and we write  

X ~ b(n,p).  From the above Result 6, we know that µµµµX = np and  

σσσσX
2
 = np(1 - p).  Furthermore, the pmf of X is: 

f(x) = 








x

n
p

x
 (1-p)

n
 
-

 
x
 for x = 0, 1, 2 … n 

 

On pp.54-55, the authors use results from the binomial expansion to 

show that this is a valid pmf (i.e., it sums to one), that E(X) = µµµµ = np, 

and that E{X(X-1)} = n(n-1)p
2
.  It follows that E(X

2
) = n(n-1)p

2
 + np, 

so σσσσ2
 = n(n-1)p

2
 + np – n

2
p

2
 = np(1-p).  [Note that the variance of this 

sum of n independent RVs is the sum of the n individual variances; 

more on that in Section 2.5.] 



 5

Students should become familiar with working with Table II on pp. 

323-327.  For example, if a coin is such that p = P(head) = 0.20 and we 

toss the coin n = 15 times, µµµµ = 15×0.20 = 3 and σσσσ2
 = 15×0.20×0.80 = 

2.4 = 1.55
2
, so we expect 3 heads give or take 1.55 heads.  Also, the 

probability that we see exactly 3 heads is equal to 0.6482 – 0.3980 = 

0.2502 = 
123 )8.0()2.0(

3

15








 and the probability that we see at least 3 heads 

is 1 – 0.3980 = 0.6020. 

 

Example 2.2-6 on p.56 raises the idea that in practice we wouldn’t 

usually know the p in the binomial distribution and we need to 

estimate it (by using an estimator).  If X ~ b(n,p), we let Y = 
n

1X, so 

that µµµµY = E(Y) = 
n

1E(X) = 
n

1 (np) = p and σσσσY
2
 = 

2

1

n
σσσσX

2
 = 

2

1

n
[np(1-p)] so 

that σσσσY
2
 = 

n

pp )1( −
.  Since E(Y) = p, we say that Y = 

n

1X is an unbiased 

estimator of p; more on this in Section 2.4. 
 

Example 2.2-7 shows that the expression E[(X - b)
2
] is minimized when 

b is chosen to equal µµµµ = E(X).  Indeed, E[(X - b)
2
] = σσσσX

2
 + (µµµµ - b)

2
. 

 

Chebyshev’s Inequality states that for any positive constant k, 

P(|X - µµµµ| ≥ kσσσσ) ≤ 2

1

k
 

 

This applies to X = any random variable!  Equivalently,  

     P(|X - µµµµ| < kσσσσ) ≥ 2

1
1
k

−  
 

For example (with k = 2), P(µµµµ – 2σσσσ < X < µµµµ + 2σσσσ) ≥ 0.75. 

 

On p.57, the authors use Chebyshev’s Inequality to show that the limit 

of probabilities assessing the difference between Y = X/n and p is 

zero; we then say that Y = X/n converges in probability to p. 
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Special Discrete Distributions (Section 2.3, pp. 59-66) 
 

X: number of successes
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Cumulative Binomial Probabilities n=15 p=0.20

 
In general, the cdf (cumulative density function) for X is defined as 
 

F(x) = P(X ≤ x) 
 

For a discrete RV, all of the probability mass occurs at discrete points 

x1, x2 …, so the associated cdf is an increasing step function ranging 

from 0 to 1.  Thus, by definition once F(x) reaches 1, it stays there.  

It’s very important to note that it is continuous from the right (but not 

necessarily from the left). 

 

On p.59, the cdf concept is illustrated for the Binomial distribution, 

and another example is shown above, here for X ~ b(15,0.20).  The 

above graph is a step function and the change in the height from one 

step to the next is equal to f(x) = 








x

n
p

x
 (1-p)

n
 
-

 
x
.  Students are asked to 

work through Examples 2.3-1 – 2.3-3 and become very familiar with 

working with Table II on pp.323-7 (important for tests/quizzes). 
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Another illustration of a discrete RV distribution is the Poisson 

distribution which has the pmf: 

f(x) = 
!x

ex λλ −

, for x = 0, 1, 2 …  
 

Note that this distribution has only one parameter (λλλλ).  Proof that this 

pmf sums to one uses the Maclaurin expansion, e
z
 = ∑

∞

=0 !k

k

k

z , and this 

series also is used to show that for this distribution µµµµ = σσσσ2
 = λλλλ. 

 

The Poisson distribution is a very important distribution in practice 

when we are counting the number of occurrences of some event in a 

fixed amount of time and where the probability of an event in a length 

of time is proportional to the interval length.  Another application of 

the Poisson distribution is that it approximates the Binomial 

distribution for large n and small p (but with constant λλλλ = np). 

 

Example 2.3-6. X ~ poi(1) where X is number of flaws per 1200 ft. of 

computer tape.  Then, from Table III on pp. 328-330, P(X ≤ 2) = 0.920 

= 
!2

1

!1

1

!0

1 121110 −−−

++
eee

.  If you count Y = the number of flaws occurring 

in 4800 ft. of tape (instead of 1200 ft.), it follows that Y ~ poi(4). 

 

Example 2.3-5. X ~ b(100,0.05) and P(X ≤ 1) = 








0

100
0.05

0 
 0.95

100
 + 










1

100
0.05

1 
 0.95

99
 = 0.0371.  Let’s approximate using Y ~ poi(5).  From 

Table III, we get 0.040; also, 
!1

5

!0

5 5150 −−

+
ee

= 0.0404, pretty close! 

 

Let the RV X be the number of Bernoulli trials until the r
th
 success.  

Then X has the Negative Binomial distribution, and we can write  

X ~ nb(p); p here is the success probability.  The pmf of X is: 
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    f(x) = 








−

−

1

1

r

x
p

r
 (1-p)

x
 
–

 
r
, for x = r, r+1, … 

The mean and variance are µµµµ = 
p

r
 and σσσσ2

 = 2

)1(

p

pr −
.  A special case is 

the Geometric distribution for which r = 1, where we are waiting for 

(counting the number of trials until) the first success. 

 

Example 2.3-7.  Success probability is p = 0.90 (90%), and the pmf for 

X = number of throws until the 10
th
 successful free throw is at the 

bottom of p.64; g(10) = g(11) = 0.3487; and the expected number of 

shots until the 10
th
 success is 11.11 give or take 1.111 = 235.1 . 

 

A box contains two types of objects, N1 of the first type, N2 of the 

second type, and so N = N1 + N2 total objects.  We take a sample of 

size n from this box without replacement and let RV X = x be the 

number of items in the sample of the first type.  The constraints on x 

are: x ≤ n, x ≤ N1, and n – x ≤ N2.  Then the pmf of X is: 
 

     f(x) = 


















−








n

N

xn

N

x

N 21

 

 

X has the Hypergeometric distribution, and the mean and variance 

are µµµµ = np and σσσσ2
 = np(1-p)

1−
−

N

nN
.  In these expressions, p = 

N

N1
is the 

proportion of the first type of objects in the box and 1-p = 
N

N2
is the 

proportion of the second type of objects in the box. 

 

Example 2.3-8.  N = 50 fuses of which N1 = 5 are defective; we sample 

n = 4.  The pmf is on the top of p.66 for x = 0, 1 … 4.  The prob. of 

seeing no defective objects: f(0) = 0.647; prob. of at least one = 0.353. 
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Estimation (Section 2.4, pp. 68-74) 
 

As is mentioned on p.56 in the context of a (Binomial) b(n,p) RV,  

Y = 
n

1X is an unbiased estimator of p since E(Y) = p.  How good is this 

estimator, and what makes an estimator “good”?  What can we say 

about how close Y = 
n

1X is to the parameter p? 

 

Some Definitions.  In the previous example, the parameter space is  

ΩΩΩΩ = {p: 0 < p < 1}.  For the Poisson situation with pmf f(x) = 
!x

ex θθ −

, 

the parameter space is ΩΩΩΩ = {θθθθ: 0 < θθθθ < ∞}.  A random sample of size n 

from this distribution means that the RVs X1, X2 … Xn are “iid” = 

independent and identically distributed, here each Xk ~ Poisson(θθθθ).  A 

function of the RVs – called a statistic – is used to estimate θθθθ – it’s 

called an estimator, in this case a point estimator.  When the realized 

values are used, we’ve calculated the point estimate.  Due to assumed 

independence (iid), the joint pmf of X1, X2 … Xn is 
 

      P(X1 = x1, X2 = x2 … Xn = xn) = f(x1;θθθθ) f(x2;θθθθ) … f(xn;θθθθ) 
 

Normally, we view this function as a function of x1, x2 … xn, but when 

the study is completed and the data is available, this can be viewed as 

a function of the unknown parameter θθθθ.  When we do so, we write 

L(θθθθ), where L(*) denotes the likelihood function.  Sometimes, it easier 

to just deal with LL(θθθθ) = ln{L(θθθθ)}, the log-likelihood function.  The 

value of θθθθ that maximizes L(θθθθ) also maximizes LL(θθθθ), and this value is 

called the maximum likelihood estimate (MLE) of θθθθ. 
 

Example 2.4-0.  Suppose that X1, X2 … Xn are a random sample from 

a Bernoulli(p) distribution, so each f(x;p) = p
x
(1-p)

1
 
-

 
x
 for x = 0 or x = 1.  

Thus, the joint pmf is f(x1,    x2, … , xn) is obtained by evaluating this at 

each of the x’s and multiplying; when this expression is viewed as a 

function of p, we obtain the likelihood function: 
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    L(p) = p
ΣΣΣΣx

(1-p)
n

 
-

 
ΣΣΣΣx

 
 

The sum here is over all values of x.  The MLE can then be obtained 

by either maximizing L(p) or the log-likelihood expression: 
 

LL(p) = (ΣΣΣΣx) ln(p) + (n – ΣΣΣΣx) ln(1 – p), 0 < p < 1 
 

Thus, the MLE here is X
n

X
p

k == ∑ˆ  

 

Example 2.4-1.  Suppose that X1, X2 … Xn are iid Poisson(θθθθ) RVs, so 

the log-likelihood function here is: 
 

     LL(θθθθ) = (ΣΣΣΣx) ln(θθθθ) – n θθθθ –    ln(x1!    x2! … xn!), θθθθ > 0 
 

Thus, the MLE is X=θ̂ , and that this is the maximum instead of just 

an extremum is confirmed by finding the second derivative and 

verifying that it evaluated at X=θ̂ is negative. 

 

Example 2.4-2.  Suppose that X1, X2 … Xn are a random sample from 

a Geometric(p) distribution, so the log-likelihood function here is: 
 

LL(θθθθ) = n ln(p) + (ΣΣΣΣx - n) ln(1 - p), 0 < p < 1 
 

By differentiation, the MLE is 
XX

n
p

k

1
ˆ ==
∑ , which makes sense since 

we see n success in a total of ΣΣΣΣxk trials. 

 

Example 2.4-3.  Suppose that X1, X2 … Xn are a random sample from 

a discrete uniform distribution over the integers 1, 2, … θθθθ (where θθθθ is 
unknown).  Thus, the likelihood here is L(θθθθ) = 1 / θθθθn

 and so the log-

likelihood function is LL(θθθθ) = -n ln(θθθθ) for θθθθ > 0.  By differentiation, 

LL'(θθθθ) = -n / θθθθ which is < 0 for all values of θθθθ.  It follows that we must 

choose the smallest value possible for θθθθ, so the MLE is  
 

},...,,max{ˆ
21 nXXX=θ  
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Example 2.4-4 (Capture-Recapture Problem).  Estimating the total 

size of a population (e.g. of wolves in Yellowstone, fish in a lake) is an 

important problem in Estimation.  We catch N1 objects (wolves, fish, 

etc.) on the first instance, then tag and release them.  After a given 

amount of time, we return to the venue and catch n objects of which x 

have tags on them from our first instance.  One would then expect: 
 

    N

N

n

x 1=  
 

Our goal is to estimate N, the total number of objects (e.g., wolves in 

the park).  Here, the relevant distribution is the Hypergeometric: 
 

     f(x) = 


















−

−









n

N

xn

NN

x

N 11

 

with the usual constraints on x, n, N1 and N.  Finding the MLE of N is 

very difficult due to the factorials.  On p.74, it is shown to be the 

largest integer less than or equal to x

nN1
.  For example, if on the first 

instance we trap and tag N1 = 120 wolves, and on the second we trap  

n = 57 wolves – x = 22 of which have tags – then since N1n / x = 310.9, 

our MLE is N̂ = 310 total wolves. 

 

Application (pp. 75-78) 
 

Suppose that the empirical results of a sample of n = 500 yields: 
 

x 0 1 2 3 4 

f 351 118 27 3 1 
 

These data could have come from a Binomial(500,p), a Poisson(λλλλ) or a 

translated Negative Binomial(r,p) distribution (or others).  Here, we 
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will need to assume each of these distributions in turn and estimate 

the respective parameters.  For this task, note that for these data, the 

sample statistics are x= 0.370 and s
2
 = 0.402. 

 

In the Poisson distribution case, since the MLE of λλλλ is the sample 

mean, we propose the Poisson distribution with λλλλ = 0.370, calculate 

the probabilities P(0), P(1) … P(4), and multiply each of these by 500 

to get the expected frequencies.  These are given in the table at the top 

of p.77 and compared with the actual observed frequencies (not bad). 
 

In the translated Negative Binomial case, equating the sample and 

theoretical means and variances, we get 
 

0.370 = 
p

pr )1( −
 0.402 = 2

)1(

p

pr −
 

 

Solving these (after rounding r to the nearest integer), we get the 

estimates r = 4 and p = 0.915.  The pmf is then given on p.76 line 20, 

and is used to find P(0), P(1) … P(4), and the expected frequencies for 

this distribution (see the second table at the top of p.77); these latter 

estimated values are closer to the actual (observed values) than for the 

Poisson, so we would guess that the translated Negative Binomial 

distribution fits these data better. 
 

Incidentally, the Binomial distribution is rejected for these data since 

for this distribution, we would then have (equating sample and 

theoretical means and variances) 
 

0.370 = np  0.402 = np(1-p), 
 

which implies that 1 – p = 0.402 / 0.370 = 1.086 and p = -0.086 (clearly 

impossible). 

 

Linear Functions of Independent RVs (Section 2.5, pp. 79-83) 
 

Returning iid RVs, the joint pmf of X1, X2 … Xn is 
 

      P(X1 = x1, X2 = x2 … Xn = xn) = f(x1;θθθθ) f(x2;θθθθ) … f(xn;θθθθ) 
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Maintaining the independence assumption but relaxing the identically 

distributed assumption, the joint pmf of X1, X2 … Xn is 
 

      P(X1 = x1, X2 = x2 … Xn = xn) = P(X1 = x1) P(X2 = x2) … P(Xn = xn) 
 

= f1(x1;θθθθ) f2(x2;θθθθ) … fn(xn;θθθθ) 
 

For example, if X1 ~ poi(λλλλ1 = 2); X2 ~ poi(λλλλ2 = 3); X1 and X2 are 

independent, then as shown on p.80, P(X1 + X2 = 2) = 
!2

5 52 −e
.  This 

suggests that the linear function Y = X1 + X2 ~ poi(λλλλ1 + λλλλ2); more on this 

in Chapter 6. 

 

On pp.80-1, it is shown that for the linear combination Y = a1X1 + a2X2 

where X1 and X2 are independent, the mean of Y is µµµµY = a1µµµµ1 + a2µµµµ2 

and variance of Y is σσσσY
2
 = a1

2σσσσ1
2

 + a2
2σσσσ2

2
.  Also, it is shown that for 

independent RVs X1, X2, … Xn (with mean and variance of Xk equal to 

µµµµk and σσσσk
2
 for k = 1…n), then the mean of Y = a1X1 + a2X2 + … + anXn is 

µµµµY = a1µµµµ1 + a2µµµµ2 + … + anµµµµn; its variance is σσσσY
2

 = a1
2σσσσ1

2
 + a2

2σσσσ2
2

 + … + an
2σσσσn

2
 

 

In the text’s proof of the above on p.80, it is also pointed out that if X1 

and X2 are independent, then (���� but not necessarily ): 
 

(1) E[(X1 – µµµµ1111)(X2 – µµµµ2222)] = E(X1 – µµµµ1111) E(X2 – µµµµ2222) = 0 

(2) E[u1(X1) u2(X2)] = E[u1(X1)] E[u2(X2)] 
 

To illustrate, X1 and X2 are independent, X1 ~ b(100,½) and X2 ~ 

b(48,¼), and Y = X1 – X2, then the mean is µµµµY = 100×½ – 48×¼ = 38 

and the variance is (1)
2×100×½×½ + (-1)

2×48×¼×¾ = 34.  Also, if 

W = X1 X2, then E(W) = 50×12 = 600. 

 

Returning to iid RVs X1, X2 … Xn each with mean µµµµ and variance σσσσ2
, 

then the RV )...(
1

21 nXXX
n

X +++=  has expected value X
µ  = µµµµ and 
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variance 
n

X

2
2 σ

σ = .  On p.82, the authors show that X converges in 

probability to µµµµ, illustrating the WLLN (weak law of large numbers); 

on p.57, it was also shown that for X ~b(n,p), 
n

X
 converges in 

probability to p.  Thus, in some sense, the unbiased estimators X and 

n

X
are good estimators for µµµµ and p respectively. 

 

The standard error associated with X  is 
n

s

n

s
s
X

==
2

 (called the 

SEM or standard error of the mean), and so an approximate (so-

called Wald) 95% confidence interval (CI) for µµµµ is thus 
n

s
x 2± . 

 

With regard to estimating a Binomial proportion (see p.56), the 

standard error (SEP) associated with 
n

X
 is 

n

nXnX
s nX

)/1)(/(
/

−
= , so 

the approximate 95% Wald CI for p is 
n

nxnx

n

x )/1)(/(
2

−
± .  Illustrations 

are given in Examples 2.5-4 and 2.5-5 on p.83; note that in Ex. 2.5-4, 

the CI for p contains ½ = 50% – what is the relevance of this? 

 

Multivariate Discrete Distributions (Section 2.6, pp. 84-93) 
 

In this section, we’ll relax the above independence assumption as well.  

In this case, the full joint pmf needs to be written out in functional or 

tabular form.  An example appears on p.85: 
 

  x1  

  1 2 f2(x2) 

2 3/10 1/10 4/10 x2 

1 4/10 2/10 6/10 

f1(x1)  7/10 3/10 1 
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The (black) probabilities in the center of the table are the joint 

probabilities; for example, f(1,2) = 3/10.  The (red and blue) 

probabilities in the margins are the marginal pmf’s: for example,  

f2(1) = 0.60 and f2(2) = 0.40.  Note that it is not true that for all x1 and 

x2, f(x1,x2) = f1(x1)f2(x2); thus X1 and X2 are dependent. 

 

For Y = u(X1,X2), E(Y) = E[u(X1,X2)] = ),(),( 2121
1 2

xxfxxu
x x∑ ∑ ; it 

follows that E[u(X1)] = ∑
1

)()( 111x
xfxu and E[u(X2)] = ∑

2

)()( 222x
xfxu  

where f1(x1) = ΣΣΣΣf(x1,x2) (summing only over x2) and f2(x2) = ΣΣΣΣf(x1,x2) 

(summing only over x1).  Thus, both means and variances can be 

found for the marginal distributions.  For the above example, µµµµ1 = 

E(X1) = (1)(7/10) + (2)(3/10) = 1.3 and σσσσ1
2
 = Var(X1) = 0.21 = 0.4583

2
.  

Similarly, µµµµ2 = 1.4, σσσσ2
2
 = 0.24 = 0.4899

2
; also, E(X1X2) = (1)(1)(0.40) + 

(1)(2)(0.30) + (2)(1)(0.20) + (2)(2)(0.10) = 1.80. 

 

Important conditions related to the joint pmf are given on p.86.  Also, 

the covariance of X1 and X2 is σσσσ12 = Cov(X1,X2) = E[(X1 - µµµµ1)(X2 - µµµµ2)], 

and it’s easy to show that σσσσ12 = E(X1X2) - µµµµ1µµµµ2; the correlation 

coefficient of X1 and X2 is 
21

12

σσ
σ

ρ = .  In the last example, σσσσ12 = 1.80 – 

(1.3)(1.4) = -0.02 and ρρρρ = -0.02/(0.4583*0.4899) = -0.0891.  Students 

should also work through Example 2.6-3 on p.87. 

 

If we have a sample of 2-ples of size n, (x1,y1), (x2,y2), … (xn,yn), then 

the sample correlation coefficient (r) is 
 

     ∑∑

∑

==

=

−−

−−
=

n

k

k

n

k

k

n

k

kk

yyxx

yyxx

r

1

2

1

2

1

)()(

))((
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A short-cut formula for r is given at the top of p.88.  Extending the 

above results to n possibly correlated RVs X2, … Xn (with respective 

means and variances µµµµk and σσσσk
2
 for k = 1…n), then it’s not hard to 

show that for Y = ΣΣΣΣakXk, the mean is µµµµY = ΣΣΣΣakµµµµk; the variance of Y is: 
 

∑∑∑
=

−

==

+=
n

k

k

m

kmmk

n

k

kkY aaa
1

1

11

222
2 σσσ

 

See Example 2.6-4 on p.88. 

 

The conditional pmf of X1 given that X2 = x2 is defined by g(x1 | x2)  

(provided f2(x2) > 0): 

g(x1 | x2) = )(

),(

22

21

xf

xxf
 

 

Similarly, the conditional pmf of X2 given that X1 = x1 is 
 

h(x2 | x1) = )(

),(

11

21

xf

xxf
 

 

(provided f1(x1) > 0).  Example 2.6-5 on p.89 provides an illustration: 

Here, f(x1,x2) = 
21

1 (x1 + x2), x1 = 1,2,3 and x2 = 1,2; the marginal 

distributions f1(x1) and f2(x2) as well as the conditional distributions 

g(x1 | x2) and h(x2 | x1) are given on pp.89-90.  For this joint density, the 

following table is relevant: 
 

 

  x1   

  1 2 3 f2(x2) 

2 3/21 

[3/12] (3/5) 

4/21 

[4/12] (4/7) 

5/21 

[5/12] (5/9) 

12/21 x2 

1 2/21 

[2/9] (2/5) 

3/21 

[3/9] (3/7) 

4/21 

[4/9] (4/9) 

9/21 

f1(x1)  5/21 7/21 9/21 1 
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In the above table, the black probabilities are the joint probabilities, 

the red and blue probabilities are again the marginal probabilities, 

the green probabilities are the conditional probabilities given x2, and 

the orange probabilities are the conditional probabilities given x1. 

 

Conditional means and variances are defined on p.91 in the logical 

manner.  In Example 2.6-6 on p.91, note that E[X2 | X1 = 3] = (1)(4/9) + 

(2)(5/9) = 14/9, E[X2
2

 | X1 = 3] = (1
2
)(4/9) + (2

2
)(5/9) = 24/9, whence 

Var[X2 | X1 = 3] = 20/81.  Note that these results differ from those for 

the marginal distribution for X2 (since these variables are correlated): 

E[X2] = 11/7 and Var[X2] = 12/49. 

 

Finally, noting that E[X2 | X1 = x1] is a function of x1 alone, in the case 

where it is linear function of x1, then we can write 
  

E[X2 | X1 = x1] = a + bx1 
 

On p.92, it is shown that for this linear case, the intercept and slope 

are a = (µµµµ2 - ρµρµρµρµ1
1

2

σ
σ

) and b = ρρρρ
1

2

σ
σ

, so we can write: 

  E[X2 | X1 = x1] = µµµµ2 + ρρρρ
1

2

σ
σ

 (x1 - µµµµ1) 

 

We return to these latter ideas when we study linear regression 

(Section 4.6). 

 

It is pointed out on p.93, that similar results to those given in Section 

2.6 apply for the continuous case using integrals instead of sums. 

 

Additional comments appear on p.96.  First, the Poisson Process 

postulates are given and discussed.  Also, the contributions of Sir 

Ronald A. Fisher and Sir David Cox to Statistics are highlighted. 


