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Note: In addition to Chapters 1 and 2, the Midterm exam on October 16
th

 will 

cover Sections 3.1-3.3 inclusive as well as the Applications on pp. 106-110.  

Material to study for Midterm: pp. 1 – 126. 

 
Chapter 3 – Continuous Distributions 

 

We’ll spend 6 classes on this 59-page chapter.  
 

Descriptive Statistics and EDA (Section 3.1, pp. 97-105) 
 

Even though they may be rounded off, if measurements of a RV X at 
least conceptually could come from an interval of possible outcomes, 
then it is a continuous RV.  Continuous data can be summarized in a 
number of ways, both graphically and numerically. 
 
On pp.97-98, steps are given to group continuous data; in the center 
of p.98, a formula is given to find relative frequencies and to then 
construct a relative frequency histogram.  The key here is that areas 

represent probabilities, so the area under the curve sums to one.  
Consider the Baby Ruth Candy Bar Weights dataset on p.98. 
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Minitab has been used in the above graphs.  In contrast with our text, 
it has chosen the intervals [20.4 – 21.2), [21.2 – 22.0), [22.0 – 22.8], etc.  
The graph above at left gives the Frequencies (fm) on the y-axis; the 
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graph on the right plots the Densities, h(x), which are the Relative 
Frequencies divided by the class widths: 
 

  h(x) = ))(( 1−− mm

m

ccn

f
  for cm-1 < x ≤ cm, and m = 1, 2 … k 

 

Usually, we calculate the actual sample mean and variance from a set 
of data, but once it has been grouped and discarded, we could find the 
grouped sample mean and variance using the formulas on p.100; 
interestingly, all points in an interval are then assumed to occur at the 
midpoint of the respective interval (called the class marks). 
 

The relevance of graphing densities instead of relative frequencies is 
illustrated in Ex. 3.1-3 on pp.100-1 since intervals of differing widths 
are chosen.   
 
Another plot of data includes Stem and Leaf Plots; these are very 
quickly obtained and give a good idea of the distribution of the data. 
 

Stem-and-Leaf Display: CBarWts  
 

Stem-and-leaf of CBarWts  N  = 40 

Leaf Unit = 0.10 
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Additional examples of Stem and Leaf plots are given on pp.102-3; as 
on p.102, usually the Stem and Leaf plot is first given for the 
unordered data, but then must be given for the ordered data. 
 
The following plot – the Box Plot – graphs the 5-number summary 
(discussed below). 
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In the above plot: at the left is the minimum (20.5), at the right is the 
maximum (26.7), in the center is the median (23.55 – also called the 
50% percentile and the second quartile Q2), on the left of the box is 
the first quartile (Q1) or 25

th percentile (22.525), and on the right of 
the box is the third quartile (Q3) or 75

th percentile (24.875). 
 

Descriptive Statistics: CBarWts  
 

Variable   N    Mean  StDev  Minimum      Q1  Median      Q3  Maximum 

CBarWts   40  23.505  1.641   20.500  22.525  23.550  24.875   26.700 

 
Once the data are ordered – as in the Stem and Leaf plot – it’s easy to 
obtain the sample order statistics including those listed above; see the 
discussion at the top of p.104.  Further, the position of the 100pth 
sample percentile is (n+1)p.  For example, the positions above of Q1, 
Q2, and Q3 are 41×0.25 = 10.25, 41×0.50 = 20.5, and 41×0.75 = 30.75.  
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Don’t confuse the position with the number itself.  It follows that Q1 = 
0.75×22.5 + 0.25×22.6 = 22.525, Q2 = ½×23.5 + ½×23.6 = 23.55, and 
Q1 = 0.25×24.8 + 0.75×24.9 = 24.875.  These values are given above in 
the Minitab output and graphed in the Box Plot.  Finally, the IQR 
(interquartile range) is Q3 - Q1; here, it’s equal to 2.35. 
 
The Box Plot on the bottom of p.105 shows the Left skew in the data. 
 
 

Applications (pp. 106-110) 
 
Example I. Solder Joint Strengths. 
 
 
Descriptive Statistics: PullStrength  
 
Variable       N    Mean  StDev  Minimum      Q1  Median      Q3  Maximum 

PullStrength  98  64.202  2.055   57.200  63.200  64.400  65.500   68.900 
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Example II. Edwin Moses Race Times. 
 
Descriptive Statistics: RaceTime  
 
Variable    N    Mean  StDev  Minimum      Q1  Median      Q3  Maximum 

RaceTime  122  48.487  0.736   47.000  47.900  48.500  49.000   50.100 

 
The Olympic runner is shown below. 
 

          
 

Note the Stem and Leaf Plot on p.107 and given here: 
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Example III. More on Solder Strengths – High and Low Temp’s. 
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Example IV. Air Pollution in 5 US Cities. 
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Continuous Probability Distributions (Section 3.2, pp. 112-117) 
 
Again, as the sample size increases without bound (n → ∞), the above 
density function h(x) approaches a continuous curve f(x), called a 
probability density function and denoted ‘pdf’.  In this case,  

(a) for x in the sample space S, f(x) > 0, whereas f(x) = 0 for 
x∉S; 

(b) ∫S f(x) dx = 1; 
(c) For A⊂ S, P(A) = ∫A f(x) dx, so if the interval (a , b) is in S,  

then P(a < X < b) = ∫
b

a

dxxf )(  

 
Ex. 3.2-1. X has a uniform distribution over the interval (0 , 1), so  
f(x) = 1 for 0 < x < 1, and f(x) = 0 otherwise; we write X ~ U(0,1).  Note 
the difference between the continuous uniform distribution in this 
chapter and the discrete uniform distribution in the last chapter.  
 

Then for 0 < a < b < 1, we have 

P(a < X < b) = ∫
b

a

dx1  = x] ba = b – a. 

Examples are given on p.113 for choices of ‘a’ and ‘b’.  Notice that 
when a = b, we get P(a < X < a) = 0. 
 

Ex. 3.2-2. X has the pdf f(x) = 
20/

20

1 xe−
 for x ≥ 0; in the next section, 

we’ll say that X has an exponential distribution with parameter  
θθθθ = 20. Here, it represents the time between calls to the 911 operators.  
This pdf is a valid pdf since it is non-negative, and integrates to one: 

∫
∞

∞−− =−−=−=
0

0

20/20/ 1)1(0]
20

1 xx edxe  

A graph of this pdf is below at left.  Note that 
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P(0 < X < 20) = ∫ =−=−= −−−
20

0

120

0

20/20/ 6321.01]
20

1
eedxe xx

 

This probability is shown below at left (pdf plot) as the indicated area 
and at right (cdf plot) as the indicated point. 
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Another example is given at the top of p.114 and graph at the center 
of that page.  Also, a more concise way to write the pdf is (p.114): 
 

   



 ∞<≤=

−

otherwise

xe
xf

x
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The graph above at right is the cumulative distribution function (cdf): 

  F(x) = P(X ≤ x) = ∫
∞−

x

dttf )(  

In this example, 
] 20/

0

20/

0

20/ 1
20

1
)( xxt

x

t eedtexF −−− −=−== ∫ ; as 

mentioned, this cdf is plotted above at right.  As indicated on p. 115, 
note that if you differentiate the cdf, you get the corresponding pdf. 
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Another example (see bottom of p.115): X has pdf g(y) = 2y for  
0 < y < 1 (and g(y) = 0 otherwise), and cdf G(y) = y2 for 0 < y < 1.  
Also, G(y) = 0 for x ≤ 0 and G(y) = 1 for y ≥ 1.  See the graphs: the pdf 
is below at left and the cdf is below at right. 
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Next, we define the mean, variance, and SD of a continuous RV X: 

• The mean is µµµµ = E(X) = ∫
∞

∞−

dxxfx )(  

• The variance is σσσσ2 = Var(X) = E[(X-µµµµ)2] = ∫
∞

∞−

− dxxfx )()( 2µ  

• The variance short cut formula is σσσσ2 = E(X2) - µµµµ2 

• The standard deviation (SD) is σσσσ = )(XVar  
 
Examples: On pp.115-116, the text shows that for the pdf g(y) = 2y, 

the mean is µµµµ = ⅔ and since E(Y2) = ½, the variance is σσσσ2 = 
18

1

3

2

2

1
2

=






− .  

Also, for X ~ U(0,1) f(x) = 1 for 0 < x < 1, µµµµ = ½ and σσσσ2 = 
12

1

2

1

3

1
2

=






− .   
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For p Œ (0 , 1), the (100p)th percentile is the number ππππp such that 
 

p = F(ππππp) = ∫
∞−

p

dttf

π

)(  
 

The 50th percentile is the median, the 25th percentile is Q1 (first 
quartile) and the 75th percentile is Q3 (third quartiles). 
 
Some illustrations are on pp. 116-117.  Also, for x in (0 , 1), g(y) = 2y so 
G(y) = y2; by substituting ¼, ½, ¾ for p (in turn) in the above 
expression with this CDF, we obtain Q1 = ππππ0.25 = ½ = 0.50, median = 

ππππ0.50 = 
2

2 = 0.7071, and Q3 = ππππ0.75 = 
2

3 = 0.8660. 

 
Special Continuous Distributions (Section 3.3, pp. 118-125) 

 
In this section, we discuss four very important continuous 
distributions: the uniform, exponential, gamma, and chi-square. 
 
Uniform distribution.  Turning to p.125, ex.3.3-3, let Y ~ U(0,1), and 

consider W = a + (b - a)Y.  Since µµµµY = ½ and σσσσY
2 = 

12

1 , we expect µµµµW = 

2

ba +  and σσσσY
2 = 

12

)( 2ab −
, but how is W distributed?  Let’s find the cdf of 

W:  G(w) = P(W ≤ w) = P(a + (b - a)Y ≤ w) = P(Y ≤ 
ab

aw

−
− ) = 

ab

aw

−
− .  By 

differentiation, the pdf of W is g(w) = 
ab −
1  for a < w < b (and g(w) = 0 

otherwise).  Thus, W ~ U(a , b).  The complete cdf is given on p.118; 
graphs are given in the center of p.119 for a = 0.30 and b = 1.55 – so 
that f(w) = 0.80 for 0.30 ≤ w ≤ 1.55.  An important application of the 
uniform distribution is random number generation (p.119). 
 
Exponential distribution.  For the parameter θθθθ > 0, X has the 
Exponential EXP(θθθθ) distribution if its pdf is  
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By integration, it follows that the cdf is 
 

  



∞<≤−

<<∞−
= − xe

x
xF

x 0,1

0,0
)(

/θ  
 

Since F(x) = P(X ≤ x), the Survival function here for 0 ≤ x < • is 

S(x) = P(X > x) = 
θ/xe−
; S(x) = 1 for x < 0. 

 
Using integration by parts, one obtains (p.120) that the mean and 
variance are µµµµ = θθθθ and σσσσ2 = θθθθ2 (so the mean and SD equal θθθθ).  Also, the 
median is θθθθ× ln(2) = 0.6931×θθθθ.  See the graph on p.120. 
 

Example 3.3-2 shows the connection between the Poisson and 
Exponential distributions: if the number of events per hour has a 
Poisson(λλλλ = 20) distribution, then the waiting time until the first such 
event has the Exponential(θθθθ = 3) distribution since 60/20 = 3 minutes. 
 
Example 3.3-3 shows that for X an Exponential E(θθθθ) RV,  
 

P(X > 900 | X > 300) = P(X > 600) 
 

This result is true in general: P(X > b | X > a) = P(X > b-a).  This 
result follows easily and directly from the form of the Survival 
function for the Exponential distribution.  Hopefully, this sounds 
familiar.  Can you name this characteristic and draw a parallel 
between the Exponential distribution and a discrete distribution? 

For t > 0, the gamma function is defined as ΓΓΓΓ(t) = ∫
∞

−−

0

1 dyey yt

.  It 

follows that ΓΓΓΓ(t) = (t-1) ΓΓΓΓ(t-1) and so for n an integer Γ Γ Γ Γ(n) = (n-1)! 
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Gamma distribution. For x < 0, the Gamma(αααα    , θθθθ) pdf is zero; for  
0 ≤ x < • it is 

     
θα

αθα
/1

)(

1
)( xexxf −−

Γ
=  

 

Proving this is a valid pdf (i.e., integrates to one) follows by the change 
of variables u = x/θθθθ and the definition of the gamma function.  It’s not 
hard to show that for X ~ GAM(αααα    , θθθθ), the mean is µµµµ = αααα θθθθ, and since 
E(X2) = (αααα    + 1) αααα θθθθ2, the variance is σσσσ2 = αααα θθθθ2.  To help us understand 
the roles of the two parameters, graphs are given on p.123. 
 
Chi-Square distribution.  The pdf at the bottom of p.123 (reproduced 
below) is for X a GAM(αααα    = r/2 , θθθθ = 2) RV, and it is the pdf of a chi-
square RV with r degrees of freedom: for 0 ≤ x < •, 
 

     
2/1)2/(

2/2)2/(

1
)( xr

r
ex

r
xf −−

Γ
=  
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We write X ~ χχχχ2(r), and “degrees of freedom” will be discussed later.  
The mean is µµµµ = r and variance is σσσσ2 = 2r.  Graphs are given in the 
center of p.124.  The cdf has no closed-form solution, but Table IV on 
p.331 give the quantiles/percentiles for various values of r.  To 
practice, work through Examples 3.3-4 and 3.3-5 on p.124. 
 

The Normal Distribution (Section 3.4, pp. 126-133) 
 

 
One of the most popular distributions is the Normal distribution, and 
X ~ N(µµµµ    , σσσσ2) if its pdf is given by: for -• < x < •, -• < µµµµ < •, σσσσ > 0, 
 








 −
−=

2

2

2

)(
exp

2

1
)(

σ
µ

πσ
x

xf
 

 

The plot of this pdf gives the usual bell-shaped curve on p.127 
centered at µµµµ and with spread (SD) σσσσ.  If X ~ N(µµµµ    , σσσσ2), then the 

variable Z = σ
µ−X
 has the Standard Normal distribution, N(0,1). By 

exercise 2.2-8 on p.58, we know the mean and variance of Z are 0 and 
1; Normality also carries over from X to Z.  The CDF of Z cannot be 
given in closed form, but is tabled in Tables Va and Vb (pp.332-3). 
 
Students should work through Examples 3.4-1 - 3.4-4 and understand 
how to work with Tables Va and Vb.  To illustrate (see Example 3.4-
3), if X ~ N(3,16), then P(2 < X < 5.2) = P(-0.25 < Z < 0.55) = 0.7088 – 
0.4013 = 0.3075.  Also, the 95th percentile is 3 + 1.645*4 = 9.58. 
 
Theorem 3.4-2 (p.129) states that the square of a Standard Normal 
RV has a χχχχ1

2 distribution.  We’ll need this result later on.  The proof is 

very instructive.  Here, X ~ N(µµµµ    , σσσσ2), so Z = σ
µ−X
 ~ N(0,1) and V = Z2.  

The trick is to (again) find the CDF and then PDF of V.  The CDF is: 
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   G(v) = P(V ≤ v) = P(Z2 ≤ v) = P( v−  ≤ Z ≤ v ) = 
dze z

v

v

2/2

2

1 −

−
∫ π  

Since the integrand above at right is an even function, 

G(v) = 
dze z

v

2/

0

2

2

1
2 −∫ π  

 
By differentiation, the PDF for v ≥ 0 is  
 

      g(v) = 
2/12/1

2/1

2/

2)2/1(

11

2

1 vv eve
v

−−−

Γ
=

π  
 

Since this is the PDF of a χχχχ1
2 RV, V ~ χχχχ1

2. 
 
On pp.130-3, the authors discuss q-q (quantile-quantile) plots – also 
called NPP’s (Normal Probability Plots) by many software packages.  
A NPP is used to assess how “near” a given sample is to Normality; in 
these plots, quantiles of the normal distribution are plotted against the 
corresponding quantiles of the sample, and Normality is declared if 
the points are linear.  See Example 3.4-6 on p.131 and the graph.  In 
Example 3.4-7 on p.132, the authors simulate data from six 
distributions, and the NPP’s are given on pp.132-3.  Most notably, for 
(c), the pdf is skewed to the right and the NPP is concave down, and 
for (f), the t-distribution is ‘heavier-tailed’ than the Normal, and the 
NPP has obvious ‘outliers’ from the line in the tails. 
 

Estimation in the Continuous Case (Section 3.5, pp. 134-141) 
 

We return to parameter estimation using the maximum likelihood 
approach.  Whereas the method of moments approach equates the 
sample statistic to the population parameter, the likelihood approach 
finds the parameter estimator in the parameter space that maximizes 
the likelihood function.  Six examples are given here. 
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Example 3.5-0.  For a random sample from the EXP(θθθθ) distribution, 
the likelihood is L(θθθθ) = (1/θθθθ)n exp{-ΣΣΣΣxk/θθθθ}, so the log-likelihood is 
 

     LL(θθθθ) = -nln(θθθθ) - ΣΣΣΣxk/θθθθ    
 

Then ∂LL(θθθθ)/∂θθθθ = -n/θθθθ + ΣΣΣΣxk/θθθθ
2.  When we set this equal to zero and 

solve, we get the MLE X=ϑ̂  (the sample mean).  Note that this MLE 
is unbiased since (p.82) E(ϑ̂ ) = E( X ) = µµµµ = θθθθ. 
 
Example 3.5-1.  For a random sample from the N(θθθθ    , σσσσ2) distribution 
with σσσσ2 known and parameter space ΩΩΩΩ = ¬, the log-likelihood is 
 

 LL(θθθθ) = -
2

n
ln(2ππππ    σσσσ2) - 2

2

2

)(

σ

θ∑ −
k kx     

 

Differentiation with respect to θθθθ, setting to zero, and solving again 
yields the MLE X=ϑ̂ - substituting this value into the second 
derivative confirms the maximum (second derivative is negative). 
 
Example 3.5-2.  For a random sample from the GAM(αααα    , θθθθ) 
distribution with αααα known and parameter space ΩΩΩΩ = [0 , •) the log-
likelihood is 
 

LL(θθθθ) = -n lnΓΓΓΓ(αααα) - ααααn ln(θθθθ) +(αααα - 1)∑k kx )log( - 
θ

∑k kx     
 

Differentiation with respect to θθθθ and setting to zero yields α
ϑ

X
=ˆ ; 

again the MLE is unbiased since E(ϑ̂ ) = E(
α
X
) = 

α
αθ
 = θθθθ. 

 
We can also maximize likelihood expressions involving two 

parameters, and obtain the MLE vector – sometimes this is easy and 
sometimes not.  To illustrate when it’s tough, return to the previous 
GAM(αααα    , θθθθ) example but with both parameters unknown (see Example 
3.5-4 on p.138).  The likelihood is difficult to maximize because of the 
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Gamma function.  In this case, it is easy to use the method of moments 
estimators (see the bottom of p.138).  Here’s an easier ML example: 
 
Example 3.5-3.  For a random sample from the N(θθθθ1    , θθθθ2) distribution 
and parameter space ΩΩΩΩ = (-• < θθθθ1 < •) ¥ (0 < θθθθ2 < •), the log-
likelihood is 
 

LL(θθθθ1 , θθθθ2) = - 2
n
ln(2ππππ    θθθθ2) - 

2

2

1

2

)(

θ

θ∑ −
k kx     

 

Differentiating this expression with respect to θθθθ1 and setting to 0 gives 
 

0
)(

2

1 =
−∑

θ

θ
k kx

 

Differentiating LL(θθθθ1 , θθθθ2) with respect to θθθθ2 and setting to 0 gives 
 

   0
2

)(

2
2

2

2

1

2

=
−

+− ∑
θ

θ

θ
k kxn

 
 

Solving these two expressions simultaneously yields the MLE’s 

X=1ϑ̂ and V
n

XX
k k =

−
= ∑ 2

2

)(
ϑ̂ .  Notice that the MLE for the 

variance divides ∑ −
k k XX 2)( by n and not (n-1) – as a result, it is a 

biased estimate of θθθθ2 (the variance) as we now show: 
 

ΣΣΣΣ(Xk – θθθθ1)
2 = ΣΣΣΣ(Xk - X )

2 +    n( X - θθθθ1)
2  

so 
Ε[ΣΕ[ΣΕ[ΣΕ[Σ(Xk – θθθθ1)

2] = E[ΣΣΣΣ(Xk - X )
2] +    nE[( X - θθθθ1)

2] 
 

The left-hand term equals nθθθθ2 and the right-most term equals θθθθ2, so 
E[ΣΣΣΣ(Xk - X )

2] = (n - 1) θθθθ2.  Hence, E( 2ϑ̂ ) = θθθθ2 – (θθθθ2/n), and the bias is 

equal to – θθθθ2/n.  On the other hand, 1

)( 2

2

−

−
=
∑

n

XX
S k k

 is an unbiased 

estimator of θθθθ2.    
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A big issue in Estimation is the performance of MLE’s in general and 
comments are made to ‘regular’ situations.  A non-regular case 
illustration is the U(0 , θθθθ) example on the bottom of p.138.  Many 
estimators – including ML estimators – have approximately Normal 
distributions.  On p.139, the authors discuss these results as related to 
Exponential, Normal, Gamma, and Binomial distributions.  It’s 
always the case for a random sample of size n where n is large enough 
that X has approximately a N(µµµµ , σσσσ2/n) distribution.  A discussion of 
how big is large enough is given on pp.140-1, as are CI’s for µµµµ and p. 
 

The Central Limit Theorem (Section 3.6, pp. 142-146) 
 

On p.142, we are reminded that E( X ) = µµµµ and Var( X ) = 
n

2σ  from 

p.82.  Thus, we standardize X by subtracting µµµµ and dividing by the 

standard error σσσσ / ÷n to get W = 
n

nY

n

X

σ
µ

σ
µ −

=
−

/
 where Y = ΣΣΣΣXk.  Thus, 

E(W) = 0 and Var(W) = 1.  The Central Limit Theorem states that 
when the X’s come from a random sample of size n, that the 
distribution of W approaches a N(0,1) distribution as n Æ•. 
 
In Example 3.6-1, the random sample of size n = 25 is from a 
distribution with µµµµ = 15 and σσσσ = 2, so the probability the sample mean 

is between 14.4 and 15.6 is approximately P{
25/2

154.14 −
<

n

X

/σ
µ−
<

25/2

156.15 −
} ª 

ΦΦΦΦ(1.5) - ΦΦΦΦ(-1.5) = 0.9332 – 0.0668 = 0.8664. 
 
The random sample in Example 3.6-2 is of size n = 20 and from the 
U(0,1) distribution so µµµµ = ½, σσσσ = 1/÷12, nµµµµ = 10, σσσσ÷n = 3/512/20 =  
It follows that P(Y  9.1) ª ΦΦΦΦ(-0.70) = 0.2420, and P(8.5  Y  11.7) ª 
ΦΦΦΦ(1.32) - Φ(Φ(Φ(Φ(-1.16) = 0.9066 – 0.1230 = 0.7836. 
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Example 3.6-3 is similar to the above except here we first must find 

the mean and variance: µµµµ = 
2

0

5

20

1



x = 1.6, E(X2) = 

2

0

6

24

1



x = 8/3 so σσσσ2 = 

8/75, and then proceed as on p.144 to find the requested probability. 
 
On p.144, the authors claim that the Normal approximation is usually 
very good for n around 25 or 30, but sometimes this isn’t right.  If the 
parent population is Normal, then the sample average or sum is 
always Normal for all values of n.  In Example 3.6-4, from the graphs 
on p.145, apparently n = 4 is large enough for this U(0,1) distribution.  
When the underlying distribution is very skewed – such as the χχχχ1

2 
distribution in Example 3.6-5 – we need a much larger sample size to 
get approximate Normality for the sum Y (see graphs on p.146). 
 
Approximations for Discrete Distributions (Section 3.7, pp. 148-151) 

 

The Normal distribution also provides a good approximation for 
certain discrete distributions such as the Binomial(n,p).  The reason 
the Normal distribution provides a good approximation is the CLT 
and since Y ~ BIN(n,p) and we think of Y as the sum of n iid Bernoulli 
RVs.  Since µµµµY = np and σσσσY

2 = np(1-p), the CLT states that  
 

W = 
)1( pnp

npY

−

−
 

 

is approximately a N(0,1) RV.  The approximation is quite good 
provided both np ≥ 5 and n(1-p) ≥ 5, and provided we use the 
continuity correction illustrated below.  As in Example 3.7-1,  
Y ~ BIN(n = 10, p = ½), since np ≥ 5 and n(1-p) ≥ 5, µµµµ = 5 and σσσσ2 = 2.5, 

then P(Y = 7) = P(6.5 < Y < 7.5) ª P{
5.2

55.6 −
< W <

5.2

55.7 −
} ª ΦΦΦΦ(1.58) –  

ΦΦΦΦ(0.95) = 0.9429 – 0.8289 = 0.1140.  The actual value is P(Y = 7) =  
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7

10 (½)7(½)3 = 0.1172, so the Normal approximation is very close.  We 

continue this setting in Example 3.7-3, and find  
 

P(3  Y < 6) ª P{
5.2

55.2 −
< W <

5.2

55.5 −
} ª ΦΦΦΦ(0.32) – ΦΦΦΦ(-1.58)  

= 0.6255 – 0.0571 = 0.5684 
 

Just for practice, students are asked to work through Example 3.7-4 
on pp.149-50 where n = 36 and p = ½ so µµµµ = 18 and σσσσ2 = 9.  Explicit 
expression of the continuity correction is given in the center of p.150 
where ½ is added or subtracted to k. 
 
The Normal distribution also well approximates the Poisson(λλλλ) 

distribution so if Y ~ POI(λλλλ), then the RV W = λ
λ−Y
 approaches the 

standard Normal distribution.  Thus, in Example 3.7-5 where Y ~ 
POI(λλλλ = 20), then  
 

P(16 < Y  21) ª P{
20

205.16 −
< W <

20

205.21 −
} ª ΦΦΦΦ(0.34) – ΦΦΦΦ(-0.78)  

= 0.6331 – 0.2177 = 0.4154 
 

Again, very close to the correct value of 0.4226. 
 


