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Chapter 4 – Applications of Statistical Inference 
 
We’ll end this course with this important ~100-page chapter.  
 

Summary of Needed Theoretical Results (Section 4.1, pp. 156-159) 
 
Theorem 4.1-1 states that if X1, X2 … Xn are n independent chi-square 
random variables with degrees of freedom r1, r2 … rn, then the sum  
Y = X1 + X2 + … + Xn has a chi-square distribution with degrees of 
freedom equal to r1 + r2 + … + rn. 
 
Theorem 4.1-2 states that if X1, X2 … Xn are n independent Normal 
random variables with respective means µ1, µ2 … µn and respective 
variances σ1

2, σ2
2, … σn

2, then the random variable Y = Σn akXk has a 
Normal distribution with mean Σn akµk and variance Σn ak

2σk
2. 

 
Theorem 4.1-3 states that for a random sample of size n from a 
N(µ,σ2) distribution with sample mean X and variance S2, then  

• X ~ N(µ , σ2 / n), 
• (n-1) S2

 / σ2 ~ χ2
n-1, and 

• X and S2 are independent. 
 
Example 4.1-3 points out that whereas Σn (Xk - µ)2 / σ2 ~ χ2

n, the 
random variable (n-1) S2

 / σ2 = Σn (Xk - X )2 / σ2 ~ χ2
n-1.  One degree of 

freedom is lost in the latter expression due to estimation of µ by X . 
 
Theorem. If Z ~ N(0,1), U ~ χ2

r, and Z and U are independent, then 
 

rU
ZT

/
=  

 

has a Student’s t distribution with r degrees of freedom.  Areas/ 
probabilities for this distribution are given in Table VI on p.334.   
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Hence, for a random sample of size n, nS
X

/
µ−

 has a tn-1 distribution. 

 
Theorem.  Let U1 ~ χ2

r, U2 ~ χ2
s and U1 and U2 are independent, then  

 

   sU
rUF

/
/

2

1=  
 

has a (Fisher’s or Snedecor’s) F distribution with r and s degrees of 
freedom.  Example 4.1.5 shows that for random Normal samples of 

size n and m, 22

22

XY

YX

S
SF

σ
σ

=  ~ F distribution with df = n-1 and m-1. 

 
Some Confidence Intervals (Section 4.2, pp. 160-172) 

 
In this Section, it is assumed that all samples are from Normal 
distributions, and are taken as approximations when this is not met. 
 

A. Confidence intervals are given on p.160 for σ2 and σ.  The first is 
[ (n-1)S2/b , (n-1)S2/a ] for a = χ2

 (1 - α/2)(n - 1) and b = χ2
 (α/2)(n - 1), 

and the second interval just takes the square roots of the 
endpoints.  To illustrate, for Example 4.2-1 on p.160, n = 13 
(seeds), 12s2 = 128.41, for α = 10%, a = 5.226 and b = 21.03, so 
the 90% CI for σ2 is [128.41/21.03 , 128.41/5.226] = [6.11 , 24.57] 
and the 90% CI for σ is [√6.11 , √24.57] = [2.47 , 4.96]. 

 
B. A confidence interval is given on p.161 for the ratio σX

2/σY
2. It is 
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 An illustration is provided in Example 4.2-2 on pp.161-2. 
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C. Confidence intervals for µ are addressed on pp.162-4.  A two-
sided 100(1-α)% confidence interval for µ is (top of p.163): 

 








 −×
+

−×
−

n
ntsx

n
ntsx )1(,)1( 2/2/ αα  

 
Example 4.2-3 is related to the amount of butterfat for 20 cows, 
so for the 90% confidence interval for µ, the relevant t-statistic 
from p. 334 is t = 1.729, and the CI is [472.80 , 542.20].  Our text 
neglects to provide the very important interpretation: we are 
90% confident that the average butterfat of all such cows during 
this 305-day period is between 472.80 and 542.20 pounds.  
Example 4.2-4 performs a comparison of CI’s for µ based on the 
above “t-method” and the “z-method” – the latter one assumes σ 
is known; both types of intervals have approximately 90% 
coverage.  Whereas the above interval is two-sided, the text also 
provides one-sided intervals for µ at the top of p.165 when either 
a lower or upper bound is desired.  For the lower bound case, this 

bound is nntsx /)1( −×− α  – note that the t-statistic is chosen 
here so that the α area is in one tail only. 

 
D. Next, we want a CI for µX - µY, the difference of means in this 

Normal setting.  Recall the sample size for the X distribution is n 
and the sample size for the Y distribution is m.  If we can assume 
that σX

2 = σY
2 = σ2, then the best estimator for σ2 is the pooled 

estimator sP
2 = [(n - 1) sX

2
 + (m - 1) sY

2] / [n + m - 2].  Then, for  
 t0 = tα/2(n + m - 2), the 100(1-α)% CI for µX - µY is 
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
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The derivation showing why T has a t-distribution is given on 
p.165.  Example 4.2-5 assumes equal variances and finds the  
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95% CI for µX - µY; here, df = 22 so t = 2.074, and sP = 7.266 since 
sP

2 = [8 × 60.76 + 14 × 48.24] / 22 = 7.2662.  Then, the 95% CI is  
[-3.65 , 9.05].  This means that we are 95% confident that µX 
exceeds µY by as little as –3.65 and as much as 9.05; it’s 
important to notice that this CI contains zero (more later). 

 
E. In the previous paragraph, when we wish to set a CI for µX - µY 

but we cannot assume equal variances, then we use the statistic U 
given near the center of p.167 (and the CI derived there from), 
and the t-distribution with df = [v] with v given in the following 
formula on p.167; this is called the Welch method. 

 
Confidence Intervals and Hypothesis Tests (Section 4.3, pp. 172-179) 

 
Two of the most important uses of Statistics are setting CI’s and also 
hypothesis testing (HT), and we now turn to HT.  On p.172, the 
authors talk about wanting to assess a new method for teaching 
statistics based on concepts instead of formulae.  In the past – the old 
method – say the average final grade score was 75 with an SD of  
σ = 10 points.  We wish to test whether now – with the new method – 
average final test scores have increased.  That is, we wish to test the 
null hypothesis H0: µ = 75 vs. the alternative hypothesis HA: µ > 75.  
We can do this by performing a (random) study, finding a test statistic 
(TS), and making a decision.  Suppose we take a random sample of 
size n = 64.  Based on our sample mean, if we wanted to set a one-
sided lower-bounded 95% CI for µ, it would be X - 2.056; so if our 
sample mean was 77.47, the lower bound would be 75.41, and we 
would believe that the statistics reform method has indeed increased 
the mean (µ).  More concisely, here the relevant test statistic (TS) is 
 

n
XZ

/σ
µ−

=  
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For the HA given above, we would reject H0 and accept HA if the TS  
Z > zα from Table Vb on p.333 – that is our decision rule.  If we do not 
reject H0, then note that H0 has not been ‘proven’ so we do not ‘accept 
it’, we simply ‘fail to reject’ it (or ‘retain’ it) – see the Remark on 
p.182.  For the above example with α = 5%, z0.05 = 1.645, so the TS for 
X = 77.47 is Z = 1.976 > 1.645, and we reject H0 and accept that µ > 
75.  Had we instead obtained a sample mean of X = 75.92 then the TS 
would be Z = 0.736 < 1.645, and we would fail to reject H0: µ = 75. 
 
There are two types of mistakes or errors we could make here.  First, 
we could reject a true H0 – this is called a type I error and its 
probability is α, called the significance level of the test.  On the other 
hand, we could retain (fail to reject) a false H0 – this is called a type II 
error and its probability is β.  Calculating β depends upon the true 
mean since H0 being false means HA: µ > 75 is true so we must specify 
the true µ.  For example, to calculate β when µ = 76.5, we obtain 
 

β = P( 64/10
75−X

< 1.645; µ = 76.5)  

= P( 64/10
5.76−X

< 1.645 - 445.0
64/10
755.76

=
−

; µ = 76.5) = 0.6718. 
 

Since this type II error probability is quite high, the authors argue 
that we might want to design a more powerful study.  How large a 
study is needed if we want α = 0.05 and β = 0.10 (again at µ = 76.5)? 
 
We need to recalculate the critical region (CR) for X :  we have 

0.05 = P( n
X

/10
75−

> 1.645; µ = 75)  CR is X > 75 + 16.45/√n.  Also, 

0.10 = P( X < 75 + 16.45/√n; µ = 76.5) 
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= P( n
X

/10
5.76−

< n
n

/10
/45.165.1 +−

; µ = 76.5) 

Hence, n
n

/10
/45.165.1 +−

 = -1.28  √n = 29.27/1.5 = 19.51.  This yields 

n = 380.77, so we take n = 381 students.  With this sample size, the 
significance level is α = 5% and the power is 1 – β = 90%. 
 
In the center of p.176, the authors address a second illustration 
involving the breaking strength of steel bars (X).  The old process 
yielded bars with an average breaking strength of µ = 50 and σ = 6, 
and researchers feel that the new process will yield bars with µ = 55 
(and the same SD).  Thus the null hypothesis here is H0: µ = 50 and 
the alternative is HA: µ = 55 – note here that since the alternative 
hypothesis contains only one value it is called a simple hypothesis.  
Our test statistic here is again based on X , and the rejection or 
critical region is the set of sample points which produce large values 
of X , such as for example X ≥ 53; the authors denote CR by C and the 
complement – the ‘acceptance region’ – by C’.  Then, we can calculate 
α and β as on p.177, and this is also shown graphically on that page. 
 

A decrease in the size of α leads to an increase in the size of β, and 
vice versa.  Both α and β decrease if the sample size n is increased.

 
In both of the above examples, we considered processes that improve 
things, but often in scientific research, we only look for a change – and 
we are led to two-sided tests instead of the above one-sided tests.  
Returning to the above teaching example, we would continue to put 
the old test average into the null (H0: µ = 75), but if we wanted to test 
for a change, the alternative would now be HA: µ ≠ 75, and the critical 
region would need to divide the α in two (α/2 in the left tail and α/2 in 
the right tail).  It’s important to realize that this two-sided test is 
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exactly equivalent to the two-sided confidence interval considered in 
Section 4.2.  The one- and two-sided tests here regarding µ are 
summarized in Table 4.3-1 on p.178.  Also on p.178, the authors 
reiterate the connection between hypothesis testing (HT) and 
confidence intervals (CIs) for all of the cases considered: a single 
mean, two means, a single variance or SD, or two variances/SDs. 
 

One-Parameter Basic Hypothesis Tests (Section 4.4, pp. 179-189) 
 
In this section, we perform tests related to one parameter – either µ, 
σ2, σ or p.  First, (on p.179) we define the p-value. 
 

The p-value associated with a test is the probability 
that we obtain a value of the test statistic that is at 
least as extreme (in the direction of the alternative) as 
the observed value of our test statistic; this probability 
is calculated assuming the null hypothesis is true. 

 
For example, in a Normal test of H0: µ = 75 versus HA: µ > 75 with  
σ = 10, n = 400, and x = 76, the p-value is 
 

     p-value = P( x > 76) = 






 −
>

−
400/10
7576

/ n
XP
σ

µ
 = P(Z > 2) = 0.0228 

 

We hasten to point out that if the alternative was instead HA: µ ≠ 75, 
then the p-value would be 2 × P(Z > 2) = 2 × 0.0228 = 0.0456.   
 
Note that our decision rule can be restated as follows: 

• If p-value < α, we reject H0 and accept HA 
• If p-value ≥ α, we fail to reject H0 
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Example 4.4-1 on p.180 is concerned with the Z-test since it is 
assumed that σ is known and the hypotheses are related to the mean.  
Here, the null is H0: µ = 60 and the alternative is HA: µ > 60; σ = 10,  
n = 52, and x = 62.75.  Thus, the p-value is 

p-value = P( x > 62.75) = 






 −
>

−
52/10

6075.62
/ n
XP
σ

µ
 = P(Z > 1.98) = 0.0239 

 

A graph of the p-value (the shaded right-hand tail probability) is 
given on p.181.  Had we set for example α = 5%, we would reject H0 
here and conclude that µ > 60.  Here, we need to assume normality but 
since the sample size is so large, this requirement is not too paramount. 
 
Example 4.4-2 on p.181 is concerned with the T-test since σ is not 
known (we use s to estimate σ) and the hypotheses are related to the 
mean.  Here, the null hypothesis is H0: µ = 4mm and the alternative is 
HA: µ ≠ 4mm; α = 0.10, n = 9, x = 4.3, s = 1.2.  Thus, the p-value is 

     p-value = 2 × P( x > 4.3) = 






 −
>

−
×

9/2.1
43.4

/
2

ns
XP µ

  

= 2 × P(t8 > 0.75) ≈ 0.50 (exact value = 0.4748). 
The data do not suggest a significant departure from the hypothesized 
mean of 4mm.  We definitely need to assume normality here. 
 
Example 4.4-3 on p.183 is concerned with the T-test since these paired 
data are analyzed using the paired t-test.  Let  
 

W = Before time – After time 
 

We assume that these n = 24 differences come from a Normal 
distribution.  Here, α = 5%, the null hypothesis is H0: µW = 0 and the 
alternative is HA: µW > 0 – the alternative corresponds to the average 
‘Before value’ exceeding the average ‘After value’. Summarizing the 
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data: n = 24, w = 0.079, sW = 0.255; the test statistic is 24/255.0
0079.0 −

= 

1.518, so the p-value is P(t23 > 1.518) – from Table VI, this value is 
between 0.05 and 0.10.  The data do not suggest a significant 
difference between the Before and After average running times. 
 
Example 4.4-4 on p.181 is concerned with the χ2-test since the test is 
related to σ2.  The hypotheses are H0: σ2 = 100 and HA: σ2 ≠ 100;  

α = 0.05, n = 23, and s2 = 147.82.  The test statistic is 2

2)1(
σ
Sn−

, 

which here is χ22
2 = 32.52, so the p-value is 2 × P(χ22

2 > 32.52) ≈ 0.18 > 
α = 0.05.  These data do not suggest a significant departure from the 
hypothesized variance of 100.  This result coincides with the sample 
variance (147.82) falling in the 95% CI for σ2 given on p.184, viz, 
[88.42 , 296.18].  We need to assume normality here. 
 
The final example is related to a Binomial proportion.  The correct 
two-sided CI for p is given at the bottom of p.185: 
 

   n
ppzp )ˆ1(ˆˆ 2/

−
± α  

 

On the other hand, to test the null hypothesis H0: p = p0, we use the 
test statistic: 

    
n
pp
ppZ

)1(
ˆ

00

0

−
−

=
 

 
Example 4.4-5 on p.186: p is the probability the tennis player is 
successful on her first serve after taking the lessons.  The hypotheses 
are H0: p = 0.40 (no change) and HA: p > 0.40 (the lessons have yielded 
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improvement).  Here 46.020092ˆ ==p , so 
73.1

200
60.040.0

40.046.0
=

×
−

=Z
 

is the test statistic.  We get the p-value from the N(0,1) table – here,  
p-value = 0.0418 < 0.05 = α, so we conclude that the lessons have 
significantly improved her first-serve success rate. 
 

Two-Parameter Basic Hypothesis Tests (Section 4.5, pp. 189-197) 
 

Students may want to re-read Section 4.2 paragraphs B, D and E 
since CI’s are related to HT’s. 
 
Here, we compare two means, two variances or two proportions from 
independently sampled groups using hypothesis testing.  (Again, the 
null hypothesis will always contain the equal sign.)  It is important to 
understand and appreciate the difference between: 

(1) The situation considered in this section: two separate groups 
such as Male and Female students, etc., and  

(2) The paired t-test situation in the last section, where the same 
person or unit is measured twice (e.g., before and after). 

 
Example 4.5-1 on p.189 is related to the growth response of pea stems 
randomized to either lower hormone concentration [X ~ N(µX , σ2) 
with sample size n = 11] or higher hormone concentration [sample size 
m = 13 and Y ~ N(µY , σ2)].  Note that we are assuming Normality here 
and equal variances (more on the variances later).  It is conjectured 
that higher hormone should result in higher average pea stem growth, 
so the hypotheses here are  
 

H0: µX = µY (µX - µY = 0)  
 

HA: µX < µY (µX - µY < 0) 
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The relevant test statistic (TS) is given on p. 189 in Equation (4.5-1).  
Here, the pooled variance estimate is  
 

sP
2 = [10 × 0.24 + 12 × 0.35] / 22 = 0.54772,  

 

so the TS is 
 

   8078.2

13
1

11
15477.0

66.103.1
1122 −=

+

−
=

+

−
=

mn
s

yxt

P

 

 
The p-value is P(t22 < -2.8078) = P(t22 > 2.8078) ≈ 0.005.  Since p < α = 
0.05, we reject H0 and accept that the higher hormone concentration 
does appear to significantly increase average pea stem growth. 
 
If we are interested in testing that two independent Normal variances 
are equal (H0: σX

2 = σY
2 or σX

2
 / σY

2 = 1), we use either of the test 
statistics Fn-1,m-1 = sX

2
 / sY

2 or Fm-1,n-1 = sY
2

 / sX
2 – usually, it’s easiest to 

put the larger sample variance over the smaller one.   
 
In Example 4.5-3 on p.193, we return to the above pea growth 
example to test equality of the variances.  Here, H0: σX

2 = σY
2 and  

HA: σX
2 ≠ σY

2 and α = 5%.  Our TS is F12,10 = 0.35 / 0.24 = 1.458.  Since 
1.458 < 3.62, the TS is in the ‘acceptance region’ so we retain H0.  
Alternatively, the p-value is 2 × P(F12,10 > 1.458) > 0.10, and since  
p > α, we again fail to reject H0.  This helps give us confidence that in 
the equal-variance 2-sample t-test that we performed above, the 
assumption of equal variances could indeed be correct. 
 
Finally, we turn to two independent-sample Binomial proportions, 
denoted p1 and p2.  The respective sample sizes from the two groups 
are n1 and n2, and the random variables are Y1 and Y2.  As in the 
previous section, let 1p̂ = Y1 / n1 and 2p̂ = Y2 / n2; for hypothesis tests 
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with null H0: p1 = p2 (= p), p is estimated by p̂ = (Y1 + Y2) / (n1 + n2).  
Again, we have two slightly different procedures – one for CI’s and 
one for HT’s.  Whereas CI’s for (p1 - p2) use the standard error: 
 

2

22

1

11 )ˆ1(ˆ)ˆ1(ˆ
n
pp

n
pp −

+
−

 
 

HT’s use the standard error: 
 









+−=

−
+

−
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Example 4.5-4 on p.195 is related to manufacturing toggle levers 
during the day and night shift and the number of defects is counted.  
Here, n1 = n2 = 1000, the hypotheses are H0: p1 = p2 and HA: p1 < p2 
(corresponding to a higher proportion of defects at night).  Also,  
α = 0.05.  Since p̂ = (37 + 53) / 2000 = 0.045, the estimated SE is 

    009271.0
1000

1
1000

1955.0045.0 =





 +××  

 

Hence, the test statistic is Z = (0.037 – 0.053) / 0.009271 = -1.7258, so 
the p-value is P(Z < -1.73) = P(Z > 1.73) = 0.0418.  Since p < α, these 
data provide (marginal = not overwhelming) evidence that the 
proportion of defects during the night shift significantly exceeds the 
proportion of defects during the day shift. 
 

Simple Linear Regression (Section 4.6, pp. 197-210) 
 

It is often the case that in a study we measure two continuous 
variables (X and Y) on each person, and we wish to relate these 
variables.  Here, we assume the relationship between X and Y is 
linear.  Specifically, given the outcome X = xk, we assume here that  
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Yk = α1 + βxk + εk; in this expression, xk is the input or explanatory 
variable, Yk is the response variable, α1 is the true y-intercept, β is the 
true slope, and εk is called the ‘error’ – the deviation above or below 
the line.  We’ll actually find it more useful to assume the a slightly 
modified (but equivalent) version of this SLR model: 
 

Yk = α + β (xk - x ) + εk 
 

Here, k = 1, 2 … n, and we’ll assume that the xk are fixed numbers 
(realizations of a random process), so only the Yk are RV’s since the εk 
are RV’s.  We assume the εk ~ N(0 , σ2).  This is a subtle, but important 
assumption: deviations above or below the line follow a Normal 
distribution and the variance does not depend upon the value of x; in 
SLR modelling, we try to validate this assumption if possible. 
 
As a result of this distributional assumption, the authors show on 
p.199 that the MLE’s for α and β are obtained by minimizing the 

objective function, H(α , β) = Σ εk
2 = ∑

=

−−−
n

k
kk xxy

1

2)]([ βα .  Thus, the 

MLE’s are y=α̂  and 2
ˆ

x

xy

s
s

=β  where (for all sums 1, 2 … to n)  

))((1))(()1( ∑∑∑∑ −=−−=− kkkkkkxy yx
n

yxyyxxsn , and  

   2222 )(1)()1( ∑∑∑ −=−=− kkkx x
n

xxxsn  
A similar expression can easily be written for (n-1) sy

2 (used below).  
Since these MLE’s also minimize the above sum of squares function 
H(α , β) = Σ εk

2, economists also call them Least-Squares Estimators. 
 
When we substitute the MLE’s for α and β into the linear model, we 
obtain the fitted or predicted values: 

)(ˆˆˆ xxy kk −+= βα  
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Then, the differences between the actual responses and the predicted 
or fitted responses, ek = yk - kŷ  = yk - )(ˆˆ xxk −− βα , are called the 
residuals; it is very important to understand/appreciate the difference 
between the (only theoretical) errors and the (observed) residuals. 
 
When it comes to estimating the variance σ2, the MLE of σ2 (see 

p.200) is 
2σ̂ = SSResid / n, where the residual sum of squares,  

SSResid = Σ ek
2.  Since this (MLE) estimator is biased, most software 

packages use the unbiased estimator, 2~σ = SSResid / (n - 2).  We know 
that this latter estimator is unbiased since on p.205 (line 7), it is 
argued that SSResid / σ2 ~ χn-2

2, and thus E(SSResid / σ2) = (n-2).  
Finally, an important descriptive measure is 
 

   r2 = 1 – [SSResid / {(n-1)*sy
2}] 

 

This r2 measure is the fraction of the total variation in the y’s that is 
explained by the regression of y on x (see p.202).  The (signed) square 
root of r2 is r, the sample correlation coefficient on p.87: r = sxy / (sx sy).  
We sometimes use the relation β̂  = r × (sy / sx). 
 
On pp. 203-4, the authors show that E(α̂ ) = α and E( β̂ ) = β – so that  
α̂ and β̂ are unbiased estimators.  Also, Var(α̂ ) = σ2

 / n, which is best 
estimated by 2~σ / n; Var( β̂ ) = σ2

 / Σ (xk - x )2, and this variance is best 
estimated by 2~σ / Σ(xk - x )2.  This latter expression appears under the 
square root sign in the denominator of T1 in the center of p.205.  If the 
variances are known, then the standardized parameter estimates have 
Normal distributions; but if we plug in the estimated variances, the 
standardized parameter estimates have t-distributions with df = n – 2. 
 
Hypothesis testing and setting CI’s is important in SLR modeling.  If 
we accept that the slope is zero, then x is not a good linear predictor of 
y (and if the slope is non-zero then x is a good linear predictor). 
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Here is an example (from p.202 and the data are graphed on p.198).  
Here, x is the midterm grade, and y is the student’s final grade. 
 

x y x2 xy y2 ŷ  e = y - ŷ  e2 
70 77 4900 5390 5929 82.56 -5.56 30.931016 
74 94 5476 6956 8836 85.53 8.47 71.741645 
72 88 5184 6336 7744 84.05 3.95 15.636006 
68 80 4624 5440 6400 81.08 -1.08 1.160728 
58 71 3364 4118 5041 73.66 -2.66 7.056424 
54 76 2916 4104 5776 70.69 5.31 28.217302 
82 88 6724 7216 7744 91.47 3.47 12.018265 
64 80 4096 5120 6400 78.11 1.89 3.575957 
80 90 6400 7200 8100 89.98 0.02 0.000305 
61 69 3721 4209 4761 75.88 -6.88 47.371380 
        

683 813 47405 56089 66731  ≈ 0 217.709038 
 
First, we are given the data – meaning the first two columns above. 
Next, we calculate columns 3-5.  Then, we compute  
 

α̂ = 813 / 10 = 81.3 
xys9 = 56089 – 0.10 (683) (813) = 561.1 
29 xs = 47405 – 0.10 (683)2 = 756.1, and so 

   β̂ = 561.1 / 756.1 = 0.742098. 
 

Thus, the fitted line for these data is: 
 

   )(742098.03.81ˆ xxy kk −+=  
 

Plugging in each of the x values above gives the predicted values in the 
sixth column above, from which we find the residuals and squared 
residuals in the last two columns.  Thus, here SSResid = 217.709, and 
the two estimates of σ2 are 

2σ̂ = 21.7709 and 
2~σ = 27.2136 = 5.2166682. 
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Also, since 
29 ys = 66731 – 0.10 (813)2 = 634.1, r2 = 1 – 217.709 / 634.1 =  

0.6567, and we say that 65.67% of the variability in the y’s is 
explained by the regression of y = final grade on x = midterm grade 
(and 34.33% is not). 
 
For testing purposes, we now need the estimated variances and SE’s 
for our parameter estimates.  For these data,  

• the estimate of the SE of α̂  is n/~2σ  = 1.64966, and 

• the estimate of the SE of β̂  is ∑ − 22 )(/~ xxkσ = 0.189716. 
 
To test H0: α = 0 versus H1: α ≠ 0, the test statistic here is t8 = 64966.1

03.81 −  = 
49.3, so the p-value = 2 × P(t8 > 49.3) is near zero, and we conclude 
that the y-intercept is not zero (reject H0 and accept H1). 
 
More importantly, to test for zero slope, H0: β = 0 versus non-zero 
slope H1: β ≠ 0, the test statistic here is t8 = 189716.0

0742098.0 −  = 3.912 and 
thus the p-value = 2 × P(t8 > 3.912) = 0.0045 (via computer – using the 
t-table on p.334, we can only say that p-value < 2*(0.005) = 0.01 since 
3.912 > 3.355).  Therefore, even if α = 0.01 we reject H0 and accept H1 
and we conclude that the slope is not zero: thus x = midterm grade is a 
good linear predictor of y = final grade.  This is based on these data 
and contingent upon the above assumptions. 
 
The final step in SLR modeling is to look at the residual plot (with the 
residuals on the y-axis and either x or the predicted values on the x-
axis) as on p.203.  We are looking for a random pattern and check the 
constant variance assumption by making sure that the top-to-bottom 
variability is the same as we move from left to right in the residual 
plot.  These data look fine so the above conclusions seem justified. 
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Chi-Square Goodness of Fit Tests (Section 4.10, pp. 238-247) 
 

A process results in one of k mutually exclusive and exhaustive events, 
A1, A2, … Ak, and let ps = P(As) for s = 1, 2 … k; thus, Σ ps = 1.  For n 
independent replicates from this process with observations y1, y2, … yk 
in the respective categories (so Σ ys = n), the joint pmf of Y1, Y2, … Yk-1 
is the multinomial one: 
 

     f(y1, y2, … yk-1) = ky
k

yy

k

ppp
yyy

n ...
!!...!

! 21
21

21
 

 

Here, yk = n - y1 - … - yk-1.  This distribution generalizes the Binomial. 
 
Even though we don’t use this distribution here, the GOF (goodness 
of fit) test is similarly based on k distinct and exhaustive categories; 
this test uses the test statistic (top of p.240): 
 

      Qk-1 =∑
=

−k

s s

ssy
1

2)(
ξ

ξ
 

 

In this expression, each ξs = nps, and – provided each ξs ≥ 5, this TS 
has a χ2

k-1 distribution when the null hypothesis is true.  Also, H0 
contains the specified proportions, and the alternative is that at least 
one of the actual proportions differs from the specified value. 
 
p.240, Ex.4.10-1 is concerned with a sequence of 51 digits and 
assessing whether the digits form a random pattern.  We place into 
category 1 situations in which a given digit is followed by the same 
digit; into category 2 goes pairs where the following digit differs by 
one value (with 0 one unit away from 9), and all other situations fall 
into category 3.  We can test for a random pattern in the digits by: 
 

H0: p1 = 1/10, p2 = 2/10, and p3 = 7/10  
H1: at least one of the ps differs from those specified in H0 

 

Notice how H0 is derived by ‘common sense’ for this test! 
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Here, y1 = 0, y2 = 8 and y3 = 42; ξ1 = 5, ξ2 = 10, and ξ3 = 35; so the TS is 

Q2 = 35
)3542(

10
)108(

5
)50( 222 −

+
−

+
−

 = 5.0 + 0.4 + 1.4 = 6.8 > 5.991 = 

χ2
0.05(2).  Thus, for α = 5%, we reject the null hypothesis and conclude 

that these 51 digits do not appear to follow a random pattern. 
 
Sometimes, we can combine the above GOF test with either a discrete 
or continuous distribution (as we did in the Application on pp.75-8).  
For example, in exercise 2.4-6 (p.79), we estimated the binomial 
parameters to be m~  = 15 and p~  = 0.373118 this yields the table: 
 

 Categories  
 {0,1,2,3} {4} {5} {6} {7} {≥ 8} Total

ys 10 7 13 13 10 9 62 
ξs 8.0484 9.6372 12.619 12.518 9.5797 9.5999 62 

 
The expected values above (ξs) were obtained using the above 
estimated m and p.  Here, the TS is  
 

Q6 – 1 - 2 = 518.12
)518.1213(

619.12
)619.1213(

6372.9
)6372.97(

0484.8
)0484.810( 2222 −

+
−

+
−

+
−

 

     5999.9
)5999.99(

5797.9
)5797.910( 22 −

+
−

+ = 1.2809 < 6.251 
 

This TS has df 6 – 1 – 2 = 3 since 2 parameters were estimated here; 
since the p-value > 0.10, we retain the Binomial (m = 15 , p = 0.373118) 
distribution for these data.  Another example (involving the Poisson 
distribution and one parameter to be estimated) is given on pp.243-4. 
 
For a continuous illustration, we consider the Continuous Uniform 
distribution over the unit interval from ‘a’ to ‘a+1’, where ‘a’ is 
unknown.  Our sample of n = 100 has a minimum sample value of 2.5, 
so we estimate ‘a’ to be 2.5.  We then have the table: 
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 Sub-intervals  
 [2.50 , 2.75] [2.75 , 3.00] [3.00 , 3.25] [3.25 , 3.50] Total 

ys 20 32 31 17 100 
ξs 25 25 25 25 100 

 
Here, the TS is  
 

Q4 – 1 - 1 = 25
)2517(

25
)2531(

25
)2532(

25
)2520( 2222 −

+
−

+
−

+
−

 = 6.96.   
 

From Table IV on p.331, 0.025 < p-value < 0.05, so with α = 5%, we 
reject the translated continuous unit Uniform distribution here.  See 
also the exponential example on pp.244-5. 
 

Contingency Tables (Section 4.11, pp. 247-258) 
 

In this section, we consider whether two or more multinomial 
distributions are equal (called tests of homogeneity), and then provide 
a test of independence of attributes; both situations use a chi-square 
and TS similar to the one used in the last section. 
 
In Exercise 4.11-1 (p.256), a random sample of 300 Group A nurses 
and a random sample of 200 Group B nurses are categorized by the 
major type of work they do (six different categories): 
 

 Category  
 1 2 3 4 5 6 Total 

Group 
A 

95 
(88.8) 

36 
(37.2) 

71 
(68.4) 

21 
(23.4) 

45 
(46.2) 

32 
(36.0) 

300 

Group 
B 

53 
(59.2) 

26 
(24.8) 

43 
(45.6) 

18 
(15.6) 

32 
(30.8) 

28 
(24.0) 

200 

Total 148 62 114 39 77 60 500 
 
Let p1A be the population percentage of Group A nurses who work in 
Category 1 work and p1B be the population percentage of Group B  
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nurses who work in Category 1 work.  Similarly, define p1A and p1B 
for Category 2 work, and so on. Then, the relevant null hypothesis 
here is: 

   H0: p1A = p1B, p2A = p2B, … p6A = p6B  
 

The alternative hypothesis is that at least one of these equalities is 
incorrect (i.e., that the percentage distributions are not identical for 
the two groups of nurses).  Note that if the null hypothesis is true, then 
the best estimate of the proportion of category 1 nurses is 148/500 = 
0.296, and the expected values (in green above) are obtained by 
multiplying 0.296 by 300 for the group A nurses and by 200 for the 
group B nurses.  Similar calculations give all of the above expected 
values.  Note that each of the expected counts exceeds 5. 
 
The generic TS to use for this type of problem is: 
 

q =∑∑
= =

−h

t

k

s st

ststy
1 1

2)(
ξ

ξ
 

 

Under the Null, it has the χ2 distribution with df = (h – 1) × (k – 1). 
 
For this example, h = 2, k = 6, df = 5, and the TS is equal to: 
 

q5 = 4.23
)4.2321(

4.68
)4.6871(

2.37
)2.3736(

8.88
)8.8895( 2222 −

+
−

+
−

+
−

 

8.24
)8.2426(

2.59
)2.5953(

0.36
)0.3632(

2.46
)2.4645( 2222 −

+
−

+
−

+
−

+  

0.24
)0.2428(

8.30
)8.3032(

6.15
)6.1518(

6.45
)6.4543( 2222 −

+
−

+
−

+
−

+  =  3.23 
 

From Table IV, the p-value is between 0.10 and 0.90 (p = 0.665 from 
the computer).  At the α = 5% level, the result is not significant.  We 
retain the claim that the distribution of category percentages is the 
same for the two groups of nurses. 
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In the above example, we used the χ2 test to test for commonality of 
two multinomial distributions (for the two groups of nurses); we can 
also use exactly the same testing methodology to see whether the row 
and column variables are independent (H0) or associated (H1). 
 
In Exercise 4.11-5 (p.257), a random sample of 100 students are cross-
classified by gender and the instrument they played: 
 

 Instrument  
Gender Piano Woodwind Brass String Vocal Total 

Male 4 
(4.95) 

11 
(13.05) 

15 
(9.45) 

6 
(5.40) 

9 
(12.15) 

45 

Female 7 
(6.05) 

18 
(15.95) 

6 
(11.55) 

6 
(6.60) 

18 
(14.85) 

55 

Total 11 29 21 12 27 100 
 
The relevant null hypothesis here is: 
 

H0: Gender and Instrument of choice are independent  
H1: Gender and Instrument of choice are associated  

 

Here, h = 2, k = 5, df = 4, and the TS is equal to: 
 

q4 = 15.12
)15.129(

40.5
)40.56(

45.9
)45.915(

05.13
)05.1311(

95.4
)95.44( 22222 −

+
−

+
−

+
−

+
−

 

85.14
)85.1418(

60.6
)60.66(

55.11
)55.116(

95.15
)95.1518(

05.6
)05.67( 22222 −

+
−

+
−

+
−

+
−

+  
 

 = 0.18 + 0.32 + 3.26 + 0.07 + 0.82 
 

+ 0.15 + 0.26 + 2.67 + 0.06 + 0.67 = 8.45 
 

From Table IV, the p-value is between 0.05 and 0.10 (p = 0.076 from 
the computer).  Although at the α = 5% level, the result is not 
significant, we point out that the results are marginally significant.  
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Also, the above calculation shows that the (marginal) deviation occurs 
among the Brass players. 
 
We see that applications of the χ2 test are far-reaching: yet another 
illustration related to continuous distributions is given on pp.250-1.  
It’s important to note that this test is applicable when we are 
comparing three binomial distributions (p.254) or two multinomial 
distributions in a test of homogeneity (our first illustration above), on 
the one hand, and when we consider only one group but with two 
variables and do a test of independence, on the other hand.  See the 
author’s comments in the final paragraph on p.255. 


